满分5 > 高中数学试题 >

已知函数 (Ⅰ)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;...

已知函数manfen5.com 满分网
(Ⅰ)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求f(x)的单调区间.
(I)根据导数的几何意义求出函数f(x)在x=1处的导数,从而求出切线的斜率,然后求出切点坐标,再用点斜式写出直线方程,最后化简成一般式即可; (II)先求出导函数f'(x),讨论k=0,0<k<1,k=1,k>1四种情形,在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0即可. 【解析】 (I)当K=2时, 由于所以曲线y=f(x)在点(1,f(1))处的切线方程为 .即3x-2y+2ln2-3=0 (II)f'(x)= 当k=0时, 因此在区间(-1,0)上,f'(x)>0;在区间(0,+∞)上,f'(x)<0; 所以f(x)的单调递增区间为(-1,0),单调递减区间为(0,+∞); 当0<k<1时,,得; 因此,在区间(-1,0)和上,f'(x)>0;在区间上,f'(x)<0; 即函数f(x)的单调递增区间为(-1,0)和,单调递减区间为(0,); 当k=1时,.f(x)的递增区间为(-1,+∞) 当k>1时,由,得; 因此,在区间和(0,+∞)上,f'(x)>0,在区间上,f'(x)<0; 即函数f(x)的单调递增区间为和(0,+∞),单调递减区间为.
复制答案
考点分析:
相关试题推荐
f(x)是定义在(-∞,3]上的减函数,不等式f(a2-sinx)≤f(a+1+cos2x)对一切x∈R均成立,求实数a的取值范围.
查看答案
已知数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2,a1=1.
(1)设bn=an+1-2an,求证{bn}是等比数列
(2)设manfen5.com 满分网,求证{Cn}是等差数列
(3)求数列{an}的通项公式及前n项和公式
查看答案
manfen5.com 满分网如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里C处的乙船.
(Ⅰ)求处于C处的乙船和遇险渔船间的距离;
(Ⅱ)设乙船沿直线CB方向前往B处救援,其方向与manfen5.com 满分网成θ角,求f(x)=sin2θsinx+cos2θcosx(x∈R)的值域.
查看答案
已知向量manfen5.com 满分网
(Ⅰ)求f(x)的最小正周期T;
(Ⅱ)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,a=1,c=manfen5.com 满分网,且f(A)恰是f(x)在[0,manfen5.com 满分网]上的最大值,求A,b和△ABC的面积.
查看答案
如图,是一个数表,第一行依次写着从小到大的正整数,然后把每行相邻的两个数的和写在这两个数的下方,得到下一行,数表从上到下与从左到右均为无限项,则这个数表中的第13行,第10个数为    manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.