满分5 > 高中数学试题 >

已知命题p:指数函数f(x)=(2a-6)x在R上单调递减,命题q:关于x的方程...

已知命题p:指数函数f(x)=(2a-6)x在R上单调递减,命题q:关于x的方程x2-3ax+2a2+1=0的两个实根均大于3.若p或q为真,p且q为假,求实数a的取值范围.
根据指数函数的单调性求出命题p为真命题时a的范围,利用二次方程的实根分布求出命题q为真命题时a的范围; 据复合命题的真假与构成其简单命题真假的关系将“p或q为真,p且q为假”转化为p q的真假,列出不等式解得. 【解析】 若p真,则f(x)=(2a-6)x在R上单调递减, ∴0<2a-6<1, ∴3<a<. 若q真,令f(x)=x2-3ax+2a2+1,则应满足 ∴ ∴a>, 又由题意应有p真q假或p假q真. ①若p真q假,则,a无解. ②若p假q真,则 ∴<a≤3或a≥.
复制答案
考点分析:
相关试题推荐
甲:函数f(x)是奇函数;乙:函数f(x)在定义域上是增函数,对于函数:
①f(x)=manfen5.com 满分网
②f(x)=log2manfen5.com 满分网),
③f(x)=x|x|,
④f(x)=manfen5.com 满分网
能使甲、乙均为真命题的所有函数的序号是    查看答案
已知集合A={x|log2x≤2},B=(-∞,a),若A⊆B则实数a的取值范围是(c,+∞),其中c=    查看答案
若函数f(a)=manfen5.com 满分网,则manfen5.com 满分网=    查看答案
函数f(x)=x3-15x2-33x+6的极大值为    查看答案
若函数f(x)=x2+ax+b的两个零点是-2和3,则不等式af(-2x)>0的解集是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.