满分5 > 高中数学试题 >

如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图的侧视图、俯视图,...

如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图的侧视图、俯视图,在直观图中,M是BD的中点,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(Ⅰ)求出该几何体的体积.
(Ⅱ)若N是BC的中点,求证:AN∥平面CME;
(Ⅲ)求证:平面BDE⊥平面BCD.

manfen5.com 满分网
(I)由图可以看出,几何体可以看作是以点B为顶点的四棱锥,其与底面积易求; (II)证明线AN与面CME中一线平行即可利用线面平行的判定定理得出线面平行,由图形易得,可构造平行四边形证明线线平行,连接MN,则MN∥CD,AE∥CD,即可证得; (Ⅲ)要平面BDE⊥平面BCD,关键是在一平面中寻找另一平面的垂线,易得AN⊥平面BCD,利用AN∥EM,可得EM⊥平面BCD ,从而得证 【解析】 (Ⅰ)由题意,EA⊥平面ABC,DC⊥平面ABC,AE∥DC,AE=2,DC=4,AB⊥AC,且AB=AC=2 ∵EA⊥平面ABC, ∴EA⊥AB,又AB⊥AC,∴AB⊥平面ACDE ∴四棱锥B-ACDE的高h=AB=2,梯形ACDE的面积S=6 ∴, 即所求几何体的体积为4(4分) (Ⅱ)连接MN,则MN∥CD,AE∥CD 又,所以四边形ANME为平行四边形,∴AN∥EM …(6分) ∵AN⊄平面CME,EM⊂平面CME,所以,AN∥平面CME;    …(8分) (Ⅲ)∵AC=AB,N是BC的中点,AN⊥BC,平面ABC⊥平面BCD ∴AN⊥平面BCD  …(10分) 由(Ⅱ)知:AN∥EM ∴EM⊥平面BCD 又EM⊂平面BDE 所以,平面BDE⊥平面BCD.…(12分)
复制答案
考点分析:
相关试题推荐
已知函数manfen5.com 满分网
(Ⅰ)求f(x)的最小正周期和单调递增区间;
(Ⅱ)若f(x)>m+2在manfen5.com 满分网上恒成立,求实数m的取值范围.
查看答案
在△ABC中,a,b,c分别是角A,B,C的对边,向量manfen5.com 满分网=(2cos2A+3,2)manfen5.com 满分网=(2cosA,1),且manfen5.com 满分网manfen5.com 满分网
(1)求角A的大小;
(2)若a=manfen5.com 满分网,b+c=3,求△ABC的面积 S.
查看答案
manfen5.com 满分网某高校在2009年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.
组号分组频数频率
第1组[160,165)50.050
第2组[165,170)0.350
第3组[170,175)30
第4组[175,180)200.200
第5组[180,185)100.100
合计1001.00
(1)请先求出频率分布表中①、②位置相应数据,再在答题纸上完成下列频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官进行面试,求:第4组至少有一名学生被考官A面试的概率?
查看答案
某同学对函数f(x)=xcosx进行研究后,得出以下结论:
①函数y=f(x)的图象是中心对称图形;
②对任意实数x,|f(x)|≤|x|恒成立;
③函数y=f(x)的图象与直线y=x有无穷多个公共点,且任意相邻两点的距离相等;
④函数y=f(x)的图象与x轴有无穷多个公共点,且任意相邻两点的距离相等;
⑤当常数k满足|k|>1时,函数y=f(x)图象与直线y=kx有且只有一个公共点.
正确的命题的序号有    查看答案
已知函数y=a2x-4+1(a>0且a≠1)的图象过定点A,且点A在直线manfen5.com 满分网上,则m+n的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.