满分5 > 高中数学试题 >

已知圆C的方程为x2+y2=4,过点M(2,4)作圆C的两条切线,切点分别为A,...

已知圆C的方程为x2+y2=4,过点M(2,4)作圆C的两条切线,切点分别为A,B,直线AB恰好经过椭圆manfen5.com 满分网的右顶点和上顶点.
(1)求椭圆T的方程;
(2)已知直线l与椭圆T相交于P,Q两不同点,直线l方程为manfen5.com 满分网,O为坐标原点,求△OPQ面积的最大值.
(1)利用点到直线的距离公式,求得另一条切线方程,与圆方程联立,从而可得直线AB的方程,由此可求椭圆T的方程; (2)直线方程与椭圆方程联立,利用韦达定理求出|PQ|,求出原点到直线l的距离,表示出三角形的面积,进而利用基本不等式,即可求得△OPQ面积的最大值. 【解析】 (1)由题意:一条切线方程为:x=2,设另一条切线方程为:y-4=k(x-2)..(2分) 则:,解得:,此时切线方程为: 切线方程与圆方程联立,可得x2+()2=4,从而可得, 则直线AB的方程为x+2y=2….(4分) 令x=0,解得y=1,∴b=1;令y=0,得x=2,∴a=2 故所求椭圆方程为….(6分) (2)联立整理得, 令P(x1,y1),Q(x2,y2),则,, ,即:2k2-1>0…..(8分) 又原点到直线l的距离为,,…..(10分) ∴ = 当且仅当时取等号,则△OPQ面积的最大值为1.            …..(12分)
复制答案
考点分析:
相关试题推荐
如图,四棱锥P-ABCD的底面ABCD是矩形,AB=2,manfen5.com 满分网,且侧面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求证:PD⊥AC;
(2)在棱PA上是否存在一点E,使得二面角E-BD-A的大小为45°,若存在,试求manfen5.com 满分网的值,若不存在,请说明理由.

manfen5.com 满分网 查看答案
如图,已知点P在正方体ABCD-A′B′C′D′的对角线BD′上,∠PDA=60°.
(Ⅰ)求DP与CC′所成角的大小;
(Ⅱ)求DP与平面AA′D′D所成角的大小.

manfen5.com 满分网 查看答案
(1)求与椭圆manfen5.com 满分网共焦点的抛物线的标准方程.
(2)已知两圆manfen5.com 满分网manfen5.com 满分网,动圆M与两圆一个内切,一个外切,求动圆圆心M的轨迹方程.
查看答案
设p:|4x-3|≤1;q:x2-(2a+1)x+a(a+1)≤0.若¬p是¬q的必要而不充分条件,求实数a的取值范围.
查看答案
已知抛物线y2=2px(p>0),过焦点F的动直线l交抛物线于A、B两点,则我们知道manfen5.com 满分网+manfen5.com 满分网为定值,请写出关于椭圆的类似的结论:    ,当椭圆方程为manfen5.com 满分网+manfen5.com 满分网=1时,manfen5.com 满分网+manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.