满分5 > 高中数学试题 >

设f(x)=ex-a(x+1). (1)若a>0,f(x)≥0对一切x∈R恒成立...

设f(x)=ex-a(x+1).
(1)若a>0,f(x)≥0对一切x∈R恒成立,求a的最大值;
(2)设manfen5.com 满分网是曲线y=g(x)上任意两点,若对任意的a≤-1,直线AB的斜率恒大于常数m,求m的取值范围;
(3)是否存在正整数a.使得manfen5.com 满分网对一切正整数n都成立?若存在,求a的最小值;若不存在,请说明理由.
(1)由f(x)=ex-a(x+1),知f′(x)=ex-a,故f(x)min=f(lna)=a-a(lna+1)=-alna,再由f(x)≥0对一切x∈R恒成立,能amax. (2)由f(x)=ex-a(x+1),知g(x)=f(x)+=.由a≤-1,直线AB的斜率恒大于常数m,知g′(x)=ex--a≥2-a=-a+2=m,(a≤-1),由此能求出实数m的取值范围. (3)设t(x)=ex-x-1,则t′(x)=ex-1,从而得到ex≥x+1,取,用累加法得到.由此能够推导出存在正整数a=2.使得1n+3n+…+(2n-1)n<•(an)n. 【解析】 (1)∵f(x)=ex-a(x+1), ∴f′(x)=ex-a, ∵a>0,f′(x)=ex-a=0的解为x=lna. ∴f(x)min=f(lna)=a-a(lna+1)=-alna, ∵f(x)≥0对一切x∈R恒成立, ∴-alna≥0, ∴alna≤0, ∴amax=1. (2)∵f(x)=ex-a(x+1), ∴g(x)=f(x)+=. ∵a≤-1,直线AB的斜率恒大于常数m, ∴g′(x)=ex--a≥2-a=-a+2=m,(a≤-1), 解得m≤3, ∴实数m的取值范围是(-∞,3]. (3)设t(x)=ex-x-1, 则t′(x)=ex-1,令t′(x)=0得:x=0. 在x<0时t′(x)<0,f(x)递减;在x>0时t′(x)>0,f(x)递增. ∴t(x)最小值为f(0)=0,故ex≥x+1, 取, 得, 累加得. ∴1n+3n+…+(2n-1)n<•(2n)n, 故存在正整数a=2.使得1n+3n+…+(2n-1)n<•(an)n.
复制答案
考点分析:
相关试题推荐
已知数列{an}满足manfen5.com 满分网,且a2=6.
(1)设manfen5.com 满分网,求数列{bn}的通项公式;
(2)设manfen5.com 满分网,c为非零常数,若数列{un}是等差数列,记manfen5.com 满分网,Sn=c1+c2+…+cn,求Sn
查看答案
已知函数f(x)=2(x2-2ax)lnx-x2+4ax+1,
(1)当a=0时,求曲线y=f(x)在(e,f(e))处的切线方程(e是自然对数的底数);
(2)求函数f(x)的单调区间.
查看答案
某种汽车购买时费用为14.4万元,每年应交付保险费、养路费及汽油费共0.9万元,汽车的维修费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,…,依等差数列逐年递增.
(Ⅰ)设使用n年该车的总费用(包括购车费用)为f(n),试写出f(n)的表达式;
(Ⅱ)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).
查看答案
manfen5.com 满分网如图,在正三棱柱ABC-A1B1C1中,点D在棱BC上,AD⊥C1D,
(1)设点M是棱BB1的中点,求证:平面AMC1⊥平面AA1C1C;
(2)设点E是B1C1的中点,过A1E作平面α交平面ADC1于l,求证:A1E∥l.
查看答案
在锐角三角形ABC中,manfen5.com 满分网
(1)求tanB的值;
(2)若manfen5.com 满分网,求实数m的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.