满分5 > 高中数学试题 >

选修4-1: 如图,点A是以线段BC为直径的圆O上一点,AD⊥BC于点D,过点B...

选修4-1:
如图,点A是以线段BC为直径的圆O上一点,AD⊥BC于点D,过点B作圆O的切线,与CA的延长线相交于点E,点G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.
(1)求证:BF=EF;
(2)求证:PA是圆O的切线.

manfen5.com 满分网
(1)利用平行线截三角形得相似三角形,得△BFC∽△DGC且△FEC∽△GAC,得到对应线段成比例,再结合已知条件可得BF=EF; (2)利用直角三角形斜边上的中线的性质和等边对等角,得到∠FAO=∠EBO,结合BE是圆的切线,得到PA⊥OA,从而得到PA是圆O的切线. 证明:(1)∵BC是圆O的直径,BE是圆O的切线,∴EB⊥BC. 又∵AD⊥BC,∴AD∥BE. 可得△BFC∽△DGC,△FEC∽△GAC. ∴,得. ∵G是AD的中点,即DG=AG. ∴BF=EF. (2)连接AO,AB. ∵BC是圆O的直径,∴∠BAC=90°. 由(1)得:在Rt△BAE中,F是斜边BE的中点, ∴AF=FB=EF,可得∠FBA=∠FAB. 又∵OA=OB,∴∠ABO=∠BAO. ∵BE是圆O的切线, ∴∠EBO=90°,得∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°, ∴PA⊥OA,由圆的切线判定定理,得PA是圆O的切线.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=xlnx.
(Ⅰ)求f(x)的最小值;
(Ⅱ)若对所有x≥1都有f(x)≥ax-1,求实数a的取值范围.
查看答案
如图,在直三棱柱ABC-A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C.求证:
(1)EF∥平面ABC;
(2)平面A1FD⊥平面BB1C1C.

manfen5.com 满分网 查看答案
已知集合A={x|x2-3(a+1)x+2(3a+1)<0},B=manfen5.com 满分网
(1)当a=2时,求A∩B;
(2)求使B⊆A的实数a的取值范围.
查看答案
已知数列{an}满足an+1-2an=0,且a3+2是a2,a4的等差中项.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)若bn=-anlog2an,Sn=b1+b2+…+bn,求使Sn+n•2n+1>50成立的正整数n的最小值.
查看答案
(北京卷文15)已知函数f(x)=2cos2x+sin2x
(Ⅰ)求f(manfen5.com 满分网)的值;
(Ⅱ)求f(x)的最大值和最小值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.