满分5 > 高中数学试题 >

如图,三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C...

如图,三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,且AB⊥BC,O为AC中点.
(Ⅰ)证明:A1O⊥平面ABC;
(Ⅱ)求直线A1C与平面A1AB所成角的正弦值;
(Ⅲ)在BC1上是否存在一点E,使得OE∥平面A1AB,若不存在,说明理由;若存在,确定点E的位置.

manfen5.com 满分网
(1)由题意可知:平面AA1C1C⊥平面ABC,根据平面与平面垂直的性质定理可以得到,只要证明A1O⊥AC就行了. (2)此小题由于直线A1C与平面A1AB所成角不易作出,再由第(1)问的结论可以联想到借助于空间直角坐标系,设定参数,转化成法向量n与所成的角去解决 (3)有了第(2)问的空间直角坐标系的建立,此题解决就方便多了,欲证OE∥平面A1AB,可以转化成证明OE与法向量n垂直 【解析】 (Ⅰ)证明:因为A1A=A1C,且O为AC的中点, 所以A1O⊥AC.(1分) 又由题意可知,平面AA1C1C⊥平面ABC, 交线为AC,且A1O⊂平面AA1C1C, 所以A1O⊥平面ABC.(4分) (Ⅱ)如图,以O为原点,OB,OC,OA1所在直线分别为x,y,z轴建立空间直角坐标系. 由题意可知,A1A=A1C=AC=2,又AB=BC,AB⊥BC,∴, 所以得: 则有:.(6分) 设平面AA1B的一个法向量为n=(x,y,z),则有, 令y=1,得所以.(7分) .(9分) 因为直线A1C与平面A1AB所成角θ和向量n与所成锐角互余,所以.(10分) (Ⅲ)设,(11分) 即,得 所以,得,(12分) 令OE∥平面A1AB,得,(13分) 即-1+λ+2λ-λ=0,得, 即存在这样的点E,E为BC1的中点.(14分)
复制答案
考点分析:
相关试题推荐
已知f(x)=x|x-a|-2,若当x∈[0,1]时,恒有f(x)<0,求实数a的取值范围.
查看答案
△ABC中,a,b,c分别是角A、B、C的对边,向量manfen5.com 满分网
(1)求角B的大小;
(2)若a=manfen5.com 满分网,b=1,求c的值.
查看答案
设a,b为正实数,现有下列命题:
①若a2-b2=1,则a-b<1;
②若manfen5.com 满分网,则a-b<1;
③若manfen5.com 满分网,则|a-b|<1;
④若|a3-b3|=1,则|a-b|<1.
其中的真命题有    .(写出所有真命题的编号) 查看答案
已知函数manfen5.com 满分网,则manfen5.com 满分网=    查看答案
已知实数manfen5.com 满分网的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.