满分5 > 高中数学试题 >

已知函数, (1)若x=1为f(x)的极值点,求a的值; (2)若y=f(x)的...

已知函数manfen5.com 满分网
(1)若x=1为f(x)的极值点,求a的值;
(2)若y=f(x)的图象在点(1,f(1))处的切线方程为x+y-3=0,求f(x)在区间[-2,4]上的最大值;
(3)当a≠0时,若f(x)在区间(-1,1)上不单调,求a的取值范围.
(1)先求导数,再根据x=1是f(x)的极值点得到:“f′(1)=0”,从而求得a值; (2)先根据切线方程为x+y-3=0利用导数的几何意义求出a值,再研究闭区间上的最值问题,先求出函数的极值,比较极值和端点处的函数值的大小,最后确定出最大值与最小值. (3)由题意得:函数f(x)在区间(-1,1)不单调,所以函数f′(x)在(-1,1)上存在零点.再利用函数的零点的存在性定理得:f′(-1)f′(1)<0.由此不等式即可求得a的取值范围. 【解析】 (1)f′(x)=x2-2ax+a2-1 ∵x=1是f(x)的极值点, ∴f′(1)=0,即a2-2a=0,解得a=0或2;(3分) (2)∵(1,f(1))在x+y-3=0上.∴f(1)=2 ∵(1,2)在y=f(x)上,∴又f′(1)=-1, ∴1-2a+a2-1=-1∴a2-2a+1=0, 解得∴ 由f′(x)=0可知x=0和x=2是极值点. ∵ ∴f(x)在区间[-2,4]上的最大值为8.(8分) (3)因为函数f(x)在区间(-1,1)不单调, 所以函数f′(x)在(-1,1)上存在零点. 而f′(x)=0的两根为a-1,a+1,区间长为2, ∴在区间(-1,1)上不可能有2个零点. 所以f′(-1)f′(1)<0,∵a2>0, ∴(a+2)(a-2)<0,-2<a<2. 又∵a≠0,∴a∈(-2,0)∪(0,2).(12分)
复制答案
考点分析:
相关试题推荐
数列{an}的前n项和Sn满足Sn-Sn-1=manfen5.com 满分网+manfen5.com 满分网(n≥2),a1=1.
(1)证明:数列manfen5.com 满分网是等差数列.并求数列{an}的通项公式;
(2)若manfen5.com 满分网,Tn=b1+b2+…+bn,求证:manfen5.com 满分网
查看答案
已知向量manfen5.com 满分网,且manfen5.com 满分网
(1)若manfen5.com 满分网,求x的范围;
(2)manfen5.com 满分网,若对任意x1manfen5.com 满分网,恒有|f(x1)-f(x2)|<t,求t的取值范围.
查看答案
已知等比数列{an}中,manfen5.com 满分网
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{(2n-1)•an}的前n项的和Sn
查看答案
在△ABC中,a、b、c分别是∠A、∠B、∠C的对边长,已知a、b、c成等比数列,且a2-c2=ac-bc,求∠A的大小及manfen5.com 满分网的值.
查看答案
关于函数manfen5.com 满分网(x∈R)有下列命题:
①由f(x1)=f(x2)=0可得x1-x2必是π的整数倍;
②y=f(x)的图象可由y=2cos2x的图象向右平移manfen5.com 满分网个单位得到;
③y=f(x)的图象关于直线manfen5.com 满分网对称;
④y=f(x)在区间manfen5.com 满分网上是减函数.
其中是假命题的序号有    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.