满分5 > 高中数学试题 >

已知函数f(x)=x2+2x+alnxa∈R. ①当a=-4时,求f(x)的最小...

已知函数f(x)=x2+2x+alnxa∈R.
①当a=-4时,求f(x)的最小值;
②若函数f(x)在区间(0,1)上为单调函数,求实数a的取值范围;
③当t≥1时,不等式f(2t-1)≥2f(t)-3恒成立,求实数a的取值范围.
①先求出其导函数,得到其在定义域上的单调性即可求出f(x)的最小值; ②先求出其导函数,把f(x)在(0,1)上单调增转化为2x2+2x+a≥0在x∈(0,1)上恒成立⇒a≥-2x2-2x恒成立,再利用二次函数在固定区间上求最值的方法求出-2x2-2x的最大值即可求实数a的取值范围; ③根据(2t-1)2+2(2t-1)+aln(2t-1)≥2t2+4t+2alnt-3恒成立则a[ln(2t-1)-2lnt]≥-2t2+4t-2⇒a[ln(2t-1)-lnt2]≥2[(2t-1)-t2再讨论他的取值范围 【解析】 ①∵f(x)=x2+2x-4lnx(x>0) ∴(2分) 当x>1时,f'(x)>0,当0<x<1时,f'(x)<0 ∴f(x)在(0,1)上单调减,在(1,+∞)上单调增 ∴f(x)min=f(1)=3(4分) ②(5分) 若f(x)在(0,1)上单调增,则2x2+2x+a≥0在x∈(0,1)上恒成立⇒a≥-2x2-2x恒成立 令u=-2x2-2x,x∈(0,1),则,umax=0 ∴a≥0(7分) 若f(x)在(0,1)上单调减,则2x2+2x+a≤0在x∈(0,1)上恒成立⇒a≤[-2x2-2x]min=-4 综上,a的取值范围是:(-∞,-4]∪[0,+∞)(9分) ③(2t-1)2+2(2t-1)+aln(2t-1)≥2t2+4t+2alnt-3恒成立a[ln(2t-1)-2lnt]≥-2t2+4t-2⇒a[ln(2t-1)-lnt2]≥2[(2t-1)-t2](10分) 当t=1时,不等式显然成立 当t>1时,在t>1时恒成立(11分) 令,即求u的最小值 设A(t2,lnt2),B(2t-1,ln(2t-1)),, 且A、B两点在y=lnx的图象上,又∵t2>1,2t-1>1,故0<kAB<y'|x=1=1 ∴,故a≤2 即实数a的取值范围为(-∞,2](14分)
复制答案
考点分析:
相关试题推荐
设{an}是由正数组成的等差数列,Sn是其前n项和
(1)若Sn=20,S2n=40,求S3n的值;
(2)若互不相等正整数p,q,m,使得p+q=2m,证明:不等式SpSq<Sm2成立;
(3)是否存在常数k和等差数列{an},使kan2-1=S2n-Sn+1恒成立(n∈N*),若存在,试求出常数k和数列{an}的通项公式;若不存在,请说明理由.
查看答案
设集合A={x|0<x-m<3},B={x|x≤0或x≥3},分别求满足下列条件的实数m的取值范围.
(1)A∩B=φ;
(2)A∪B=B.
查看答案
等差数列{an}前n项和为Sn.已知am-1+am+1-a2m=0,S2m-1=38,则m=    查看答案
化简manfen5.com 满分网查看答案
当{a,0,-1}={4,b,0}时,a=    ,b=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.