满分5 > 高中数学试题 >

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数. (1)sin2...

某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.
(1)sin213°+cos217°-sin13°cos17°
(2)sin215°+cos215°-sin15°cos15°
(3)sin218°+cos212°-sin18°cos12°
(4)sin2(-18°)+cos248°-sin2(-18°)cos48°
(5)sin2(-25°)+cos255°-sin2(-25°)cos55°
(Ⅰ)试从上述五个式子中选择一个,求出这个常数
(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.
(Ⅰ)选择(2),由sin215°+cos215°-sin15°cos15°=1-sin30°=,可得这个常数的值. (Ⅱ)推广,得到三角恒等式sin2α+cos2(30°-α)-sinαcos(30°-α)=.证明方法一:直接利用两角差的余弦公式代入等式的左边,化简可得结果. 证明方法二:利用半角公式及两角差的余弦公式把要求的式子化为 +-sinα(cos30°cosα+sin30°sinα),即 1-+cos2α+sin2α -sin2α-,化简可得结果. 【解析】 选择(2),计算如下: sin215°+cos215°-sin15°cos15°=1-sin30°=,故 这个常数为. (Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广,得到三角恒等式sin2α+cos2(30°-α)-sinαcos(30°-α)=. 证明:(方法一)sin2α+cos2(30°-α)-sinαcos(30°-α)=sin2α+-sinα(cos30°cosα+sin30°sinα) =sin2α+cos2α+sin2α+sinαcosα-sinαcosα-sin2α=sin2α+cos2α=. (方法二)sin2α+cos2(30°-α)-sinαcos(30°-α)=+-sinα(cos30°cosα+sin30°sinα) =1-+(cos60°cos2α+sin60°sin2α)-sin2α-sin2α =1-+cos2α+sin2α-sin2α-=1--+=.
复制答案
考点分析:
相关试题推荐
在数列{an}中,a1=1,manfen5.com 满分网,其中n∈N*
(1)求证:数列{bn}是等差数列;
(2)求证:在数列{an}中对于任意的n∈N*,都有an+1<an
(3)设manfen5.com 满分网,试问数列{cn}中是否存在三项,它们可以构成等差数列?如果存在,求出这三项;如果不存在,说明理由.
查看答案
已知点F是抛物线C:y2=x的焦点,S是抛物线C在第一象限内的点,且|SF|=manfen5.com 满分网
(Ⅰ)求点S的坐标;
(Ⅱ)以S为圆心的动圆与x轴分别交于两点A、B,延长SA、SB分别交抛物线C于M、N两点;
①判断直线MN的斜率是否为定值,并说明理由;
②延长NM交x轴于点E,若|EM|=manfen5.com 满分网|NE|,求cos∠MSN的值.

manfen5.com 满分网 查看答案
已知函数f(x)=x2-alnx(a∈R).
(Ⅰ)若a=2,求证:f(x)在(1,+∞)上是增函数;
(Ⅱ)求f(x)在[1,e]上的最小值.
查看答案
如图,已知菱形ABCD的边长为6,∠BAD=60°,AC∩BD=O.将菱形ABCD沿对角线AC折起,使manfen5.com 满分网,得到三棱锥B-ACD.
(Ⅰ)若点M是棱BC的中点,求证:OM∥平面ABD;
(Ⅱ)求二面角A-BD-O的余弦值.

manfen5.com 满分网 查看答案
张先生家住H小区,他在C科技园区工作,从家开车到公司上班有L1,L2两条路线(如图),L1路线上有A1,A2,A3三个路口,各路口遇到红灯的概率均为manfen5.com 满分网;L2路线上有B1,B2两个路口,各路口遇到红灯的概率依次为manfen5.com 满分网manfen5.com 满分网
(Ⅰ)若走L1路线,求最多遇到1次红灯的概率;
(Ⅱ)若走L2路线,求遇到红灯次数X的数学期望.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.