满分5 > 高中数学试题 >

设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=s...

设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=sinAcosC+cosAsinC.
(Ⅰ)求角A的大小;
(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.
(Ⅰ)根据2sinBcosA=sinAcosC+cosAsinC,可得2sinBcosA=sin(A+C),从而可得2sinBcosA=sinB,由此可求求角A的大小; (Ⅱ)利用b=2,c=1,A=,可求a的值,进而可求B=,利用D为BC的中点,可求AD的长. 【解析】 (Ⅰ)∵2sinBcosA=sinAcosC+cosAsinC ∴2sinBcosA=sin(A+C) ∵A+C=π-B ∴sin(A+C)=sinB>0 ∴2sinBcosA=sinB ∴cosA= ∵A∈(0,π) ∴A=; (Ⅱ)∵b=2,c=1,A= ∴a2=b2+c2-2bccosA=3 ∴b2=a2+c2 ∴B= ∵D为BC的中点, ∴AD=.
复制答案
考点分析:
相关试题推荐
设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列.
(1)求数列{an}的通项公式.
(2)令bn=lna3n+1,n=1,2,…,求数列{bn}的前n项和Tn
查看答案
在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinB(tanA+tanC)=tanAtanC.
(Ⅰ)求证:a,b,c成等比数列;
(Ⅱ)若a=1,c=2,求△ABC的面积S.
查看答案
已知manfen5.com 满分网
(I)当manfen5.com 满分网时,解不等式f(x)≤0;
(II)若a>0,解关于x的不等式f(x)≤0.
查看答案
已知2<a<3,-2<b<-1,求ab,manfen5.com 满分网的取值范围.
查看答案
在△ABC中,内角A,B,C所对的边分别是a,b,c.已知8a=5b,B=2A,则cosB=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.