已知:以点
为圆心的圆与x轴交于点O,A,与y轴交于点O、B,其中O为原点,
(1)求证:△OAB的面积为定值;
(2)设直线y=-2x+4与圆C交于点M,N,若OM=ON,求圆C的方程.
考点分析:
相关试题推荐
已知圆C经过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段长为4
,半径小于5.
(1)求直线PQ与圆C的方程;
(2)若直线l∥PQ,且l与圆C交于点A、B,∠AOB=90°,求直线l的方程.
查看答案
如图组合体中,三棱柱ABC-A
1B
1C
1的侧面ABB
1A
1是圆柱的轴截面,C是圆柱底面圆周上不与A,B重合一个点.
(1)求证:无论点C如何运动,平面A
1BC⊥平面A
1AC;
(2)当C是弧AB的中点时,求四棱锥A
1-BCC
1B
1与圆柱的体积比.
查看答案
如图,在正四棱锥P-ABCD中,PA=AB=a,点E在棱PC上.
(1)问点E在何处时,PA∥平面EBD,并加以证明;
(2)求二面角C-PA-B的余弦值.
查看答案
设函数f(x)=
是奇函数,其中a,b,c∈N,f(1)=2,f(2)<3.
(Ⅰ)求a,b,c的值;
(Ⅱ)判断并证明f(x)在(-∞,-1]上的单调性.
查看答案
给出下列四个命题:
①过平面外一点作与该平面成θ角的直线一定有无穷多条;
②一条直线与两个相交平面都平行,则它必与这两个平面的交线平行;
③对确定的两条异面直线,过空间任意一点有且只有唯一一个平面与这两条异面直线都平行;
④对两条异面直线,都存在无穷多个平面与这两条异面直线所成的角相等.
其中正确的命题的序号是
.(请把所有正确命题的序号都填上)
查看答案