登录
|
注册
返回首页
联系我们
在线留言
满分5
>
高中数学试题
>
已知定义域为R的函数f(x)=是奇函数. (Ⅰ)求b的值; (Ⅱ)判断函数f(x...
已知定义域为R的函数f(x)=
是奇函数.
(Ⅰ)求b的值;
(Ⅱ)判断函数f(x)的单调性;
(Ⅲ)若对任意的t∈R,不等式f(t
2
-2t)+f(2t
2
-k)<0恒成立,求k的取值范围.
(Ⅰ)利用奇函数定义f(x)=-f(x)中的特殊值f(0)=0求b的值; (Ⅱ)设x1<x2然后确定f(x1)-f(x2)的符号,根据单调函数的定义得到函数f(x)的单调性; (III)结合单调性和奇函数的性质把不等式f(t2-2t)+f(2t2-k)<0转化为关于t的一元二次不等式,最后由一元二次不等式知识求出k的取值范围. 【解析】 (Ⅰ)因为f(x)是奇函数,所以f(0)=0, 即 (Ⅱ)由(Ⅰ)知 , 设x1<x2则f(x1)-f(x2)=-= 因为函数y=2x在R上是增函数且x1<x2∴f(x1)-f(x2)=>0 即f(x1)>f(x2) ∴f(x)在(-∞,+∞)上为减函数 (III)f(x)在(-∞,+∞)上为减函数,又因为f(x)是奇函数, 所以f(t2-2t)+f(2t2-k)<0 等价于f(t2-2t)<-f(2t2-k)=f(k-2t2), 因为f(x)为减函数,由上式可得:t2-2t>k-2t2. 即对一切t∈R有:3t2-2t-k>0, 从而判别式 . 所以k的取值范围是k<-.
复制答案
考点分析:
相关试题推荐
在△ABC中,已知
.
(1)求证:tanB=3tanA;
(2)若tanC=2,求A的值.
查看答案
甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为
.且他们是否破译出密码互不影响.若三人中只有甲破译出密码的概率为
.
(Ⅰ)求甲乙二人中至少有一人破译出密码的概率;
(Ⅱ)求p的值;
(Ⅲ)设甲、乙、丙三人中破译出密码的人数为X,求X的分布列和数学期望EX.
查看答案
在△ABC中,a,b,c分别为内角A,B,C的对边,且b
2
+c
2
-a
2
=bc.
(Ⅰ)求角A的大小;
(Ⅱ)设函数
,求f(B)的最大值,并判断此时△ABC的形状.
查看答案
函数y=x
2
(x>0)的图象在点(a
n
,a
n
2
)处的切线与x轴交点的横坐标为a
n+1
,n∈N
*
,若a
1
=16,则a
3
+a
5
=
,数列{a
n
}的通项公式为
.
查看答案
已知函数f(x)=
,若f(a
2
-2)>f(a),则实数a的取值范围是
.
查看答案
试题属性
题型:解答题
难度:中等
Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.