满分5 > 高中数学试题 >

已知二次函数y=f1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f2...

已知二次函数y=f1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f2(x)的图象与直线y=x的两个交点间距离为8,f(x)=f1(x)+f2(x).
(1)求函数f(x)的表达式;
(2)证明:当a>3时,关于x的方程f(x)=f(a)有三个实数解.
(1)由题意已知二次函数y=f1(x)的图象以原点为顶点且过点(1,1),设出函数的解析式,然后根据待定系数法求出函数的解析式; (2)由已知f(x)=f(a),得x2+=a2+,在同一坐标系内作出f2(x)=和f3(x)=-x2+a2+的大致图象,然后利用数形结合进行讨论求证. 【解析】 (1)由已知,设f1(x)=ax2,由f1(1)=1,得a=1, ∴f1(x)=x2. 设f2(x)=(k>0),它的图象与直线y=x的交点分别为 A(,)B(-,-) 由|AB|=8,得k=8,.∴f2(x)=.故f(x)=x2+. (2)证法一:f(x)=f(a),得x2+=a2+, 即=-x2+a2+. 在同一坐标系内作出f2(x)=和f3(x)=-x2+a2+的大致图象, 其中f2(x)的图象是以坐标轴为渐近线,且位于第一、三象限的双曲线, f3(x)与的图象是以(0,a2+)为顶点,开口向下的抛物线. 因此,f2(x)与f3(x)的图象在第三象限有一个交点, 即f(x)=f(a)有一个负数解. 又∵f2(2)=4,f3(2)=-4+a2+ 当a>3时,.f3(2)-f2(2)=a2+-8>0, ∴当a>3时,在第一象限f3(x)的图象上存在一点(2,f(2))在f2(x)图象的上方. ∴f2(x)与f3(x)的图象在第一象限有两个交点,即f(x)=f(a)有两个正数解. 因此,方程f(x)=f(a)有三个实数解. 证法二:由f(x)=f(a),得x2+=a2+, 即(x-a)(x+a-)=0,得方程的一个解x1=a. 方程x+a-=0化为ax2+a2x-8=0, 由a>3,△=a4+32a>0,得 x2=,x3=, ∵x2<0,x3>0,∴x1≠x2,且x2≠x3. 若x1=x3,即a=,则3a2=,a4=4a, 得a=0或a=,这与a>3矛盾,∴x1≠x3. 故原方程f(x)=f(a)有三个实数解.
复制答案
考点分析:
相关试题推荐
某单位有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出x(x∈N*)名员工从事第三产业,调整后他们平均每人每年创造利润为manfen5.com 满分网万元(a>0),剩下的员工平均每人每年创造的利润可以提高0.2x%.
(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?
(2)在(1)的条件下,若调整出的员工创造的年总利润始终不高于剩余员工创造的年总利润,则a的取值范围是多少?
查看答案
如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E是SD上的点,且DE=λa(0<λ≤1)
(1)求证:对任意的λ∈(0,1],都有AC⊥BE;
(2)是否存在点E使AE与平面SBD所成的角θ满足manfen5.com 满分网,若存在,求λ的值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知{an}是各项均为正数的等比数列,且manfen5.com 满分网
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=an2+log2an,求数列{bn}的前n项和Tn
查看答案
已知向量manfen5.com 满分网manfen5.com 满分网,函数manfen5.com 满分网
(1)求函数f(x)的最小正周期和最大值;
(2)在给定的坐标系内,用五点作图法画出函数f(x)在一个周期内的图象.

manfen5.com 满分网 查看答案
某市教育局规定:初中升学须进行体育考试,总分30分,成绩计入初中毕业升学考试总分,还将作为初中毕业生综合素质评价“运动和健康”维度的实证材料.为了解九年级学生的体育素质,某校从九年级的六个班级共420名学生中按分层抽样抽取60名学生进行体育素质测试.
(1)若九(1)班现有学生70人,按分层抽样,则九(1)班应抽取学生多少人?
(2)如图是九年级(1)、(2)班所抽取学生的体育测试成绩的茎叶图根据茎叶图估计九(1)、九(2)班学生体育测试的平均成绩;
(3)已知另外四个班级学生的体育测试的平均成绩:17.3,16.9,18.4,19.4.若从六个班级中任意抽取两个班级学生的平均成绩作比较,求平均成绩之差的绝对值不小于1的概率.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.