满分5 > 高中数学试题 >

已知四棱锥P-ABCD的三视图如下图所示,E是侧棱PC上的动点. (1)求四棱锥...

已知四棱锥P-ABCD的三视图如下图所示,E是侧棱PC上的动点.manfen5.com 满分网
(1)求四棱锥P-ABCD的体积;
(2)是否不论点E在何位置,都有BD⊥AE?证明你的结论;
(3)若点E为PC的中点,求二面角D-AE-B的大小.
(1)依据三视图的数据,以及位置关系,直接求四棱锥P-ABCD的体积; (2)连接AC,证明BD⊥平面PAC,说明不论点E在何位置,都有BD⊥AE; (3)点E为PC的中点,在平面DAE内过点D作DF⊥AE于F,连接BF,说明∠DFB为二面角D-AE-B的平面角,解三角形DFB,求二面角D-AE-B的大小. 【解析】 (1)由三视图可知,四棱锥P-ABCD的底面是边长为1的正方形, 即四棱锥P-ABCD的体积为.(5分) 侧棱PC⊥底面ABCD,且PC=2.(2分) ∴, (2)不论点E在何位置,都有BD⊥AE.(7分) 证明如下:连接AC,∵ABCD是正方形,∴BD⊥AC.(9分) ∵PC⊥底面ABCD,且BD⊂平面ABCD,∴BD⊥PC.(10分) 又∵AC∩PC=C,∴BD⊥平面PAC.(11分) ∵不论点E在何位置,都有AE⊂平面PAC. ∴不论点E在何位置,都有BD⊥AE.(12分) (3):在平面DAE内过点D作DF⊥AE于F,连接BF. ∵AD=AB=1,,, ∴Rt△ADE≌Rt△ABE, 从而△ADF≌△ABF,∴BF⊥AE. ∴∠DFB为二面角D-AE-B的平面角.(15分) 在Rt△ADE中,, 又,在△DFB中,由余弦定理得 ,(18分) ∴∠DGB=120°,即二面角D-AE-B的大小为120°.(20分)
复制答案
考点分析:
相关试题推荐
已知函数f(x)=ax3+bx(x∈R),
(1)若函数f(x)的图象在点x=3处的切线与直线24x-y+1=0平行,函数f(x)在x=1处取得极值,求函数f(x)的解析式,并确定函数的单调递减区间;
(2)若a=1,且函数f(x)在[-1,1]上是减函数,求b的取值范围.
查看答案
已知设数列{bn}的前n项和为Sn,且bn=2-Sn;数列{an}为等差数列,且a5=9,a7=13.
(1)求数列{bn}的通项公式;
(2)若cn=an•bn(n∈N*),Tn为数列{cn}的前n项和,求Tn
查看答案
设函数f(x)=2cos2x+manfen5.com 满分网sin2x.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)当x∈[manfen5.com 满分网]时,求f(x)的值域.
查看答案
椭圆manfen5.com 满分网的左、右焦点分别是F1,F2,过F2作倾斜角为120°的直线与椭圆的一个交点为M若MF1垂直于x轴,则椭圆的离心率为    查看答案
manfen5.com 满分网已知某几何体的三视图如图,则该几何体的表面积为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.