满分5 > 高中数学试题 >

已知函数 (1)求函数f(x)的单调递增区间; (2)△ABC内角A,B,C的对...

已知函数manfen5.com 满分网
(1)求函数f(x)的单调递增区间;
(2)△ABC内角A,B,C的对边分别为a,b,c,若manfen5.com 满分网,b=1,manfen5.com 满分网,且a>b,试求角B和角C.
(1)将f(x)解析式第一项利用两角和与差的余弦函数公式及特殊角的三角函数值化简,整理后利用两角和与差的正弦函数公式化为一个角的正弦函数,由正弦函数的递增区间为[2kπ-,2kπ+],x∈Z列出关于x的不等式,求出不等式的解集即可得到f(x)的递增区间; (2)由(1)确定的f(x)解析式,及f()=-,求出sin(B-)的值,由B为三角形的内角,利用特殊角的三角函数值求出B的度数,再由b与c的值,利用正弦定理求出sinC的值,由C为三角形的内角,利用特殊角的三角函数值求出C的度数,由a大于b得到A大于B,检验后即可得到满足题意B和C的度数. 【解析】 (1)f(x)=cos(2x-)-cos2x=sin2x-cos2x=sin(2x-), 令2kπ-≤2x-≤2kπ+,x∈Z,解得:kπ-≤x≤kπ+,x∈Z, 则函数f(x)的递增区间为[kπ-,kπ+],x∈Z; (2)∵f(B)=sin(B-)=-,∴sin(B-)=-, ∵0<B<π,∴-<B-<, ∴B-=-,即B=, 又b=1,c=, ∴由正弦定理=得:sinC==, ∵C为三角形的内角, ∴C=或, 当C=时,A=;当C=时,A=(不合题意,舍去), 则B=,C=.
复制答案
考点分析:
相关试题推荐
设函数f(x)=x3-6x+5,x∈R
(Ⅰ)求f(x)的单调区间和极值;
(Ⅱ)若关于x的方程f(x)=a有3个不同实根,求实数a的取值范围.
查看答案
在△ABC中,内角A,B,C对边的边长分别是a,b,c.已知manfen5.com 满分网
(1)若△ABC的面积等于manfen5.com 满分网,求a,b;
(2)若sinC+sin(B-A)=2sin2A,求△ABC的面积.
查看答案
已知函数manfen5.com 满分网,其中a,b∈R.
(Ⅰ)若曲线y=f(x)在点P(2,f(2))处的切线方程为y=5x-4,求函数f(x)的解析式;
(Ⅱ)当a>0时,讨论函数f(x)的单调性.
查看答案
已知A、B、C为△ABC的三内角,且其对边分别为a、b、c,若manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网
(Ⅰ)求角A;(Ⅱ)若b+c=4,△ABC的面积为manfen5.com 满分网,求a.
查看答案
设命题p:实数x满足x2-4ax+3a2≤0,其中a>0;命题q:实数x满足x2-x-6≤0,且¬p是¬q的必要不充分条件,求a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.