满分5 > 高中数学试题 >

已知向量,设函数. (1)求f(x)的最小正周期与单调递减区间 (2)在△ABC...

已知向量manfen5.com 满分网,设函数manfen5.com 满分网
(1)求f(x)的最小正周期与单调递减区间
(2)在△ABC中,a、b、c分别是角A、B、C的对边,若f(A)=4,b=1,△ABC的面积为manfen5.com 满分网,求a的值.
(1)用向量的数量积法则及三角函数的二倍角公式化简f(x),再用三角函数的周期公式和整体代换的方法求出周期和单调区间 (2)用三角形的面积公式和余弦定理列方程求. 【解析】 (1)∵, ∴=== ∴ 令 ∴ ∴f(x)的单调区间为,k∈Z (2)由f(A)=4得 ∴ 又∵A为△ABC的内角 ∴ ∴ ∴ ∵ ∴ ∴c=2 ∴ ∴
复制答案
考点分析:
相关试题推荐
已知命题p:在x∈[1,2]内,不等式x2+ax-2>0恒成立;命题q:函数manfen5.com 满分网是区间[1,+∞)上的减函数.若命题“p∀q”是真命题,求实数a的取值范围.
查看答案
已知cosα=manfen5.com 满分网,cos(α-β)=manfen5.com 满分网,且0<β<α<manfen5.com 满分网
(Ⅰ)求tan2α的值;
(Ⅱ)求β.
查看答案
对于函数f(x)=x|x|+px+q,现给出四个命题:
①q=0时,f(x)为奇函数
②y=f(x)的图象关于(0,q)对称
③p=0,q>0时,方程f(x)=0有且只有一个实数根
④方程f(x)=0至多有两个实数根
其中正确命题的序号为    查看答案
观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=    查看答案
凸函数的性质定理为:如果函数f(x)在区间D上是凸函数,则对于区间D内的任意x1,x2,…,xn,有manfen5.com 满分网≤f(manfen5.com 满分网),已知函数y=sinx在区间(0,π)上是凸函数,则在△ABC中,sinA+sinB+sinC的最大值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.