先根据f(x+1)=f(x-1)求出函数的周期,然后根据函数在x∈(0,1)时上的单调性和函数值的符号推出在x∈(-1,0)时的单调性和函数值符号,最后根据周期性可求出所求.
【解析】
∵f(x+1)=f(x-1),
∴f(x+2)=f(x)即f(x)是周期为2的周期函数
∵当x∈(0,1)时,>0,且函数在(0,1)上单调递增,y=f(x)是奇函数,
∴当x∈(-1,0)时,f(x)<0,且函数在(-1,0)上单调递增
根据函数的周期性可知y=f(x)在(1,2)内是单调增函数,且f(x)<0
故选A