满分5 > 高中数学试题 >

已知函数f(x)=ax+x2-xlna(a>0,a≠1). (Ⅰ)当a>1时,求...

已知函数f(x)=ax+x2-xlna(a>0,a≠1).
(Ⅰ)当a>1时,求证:函数f(x)在(0,+∞)上单调递增;
(Ⅱ)若函数y=|f(x)-t|-1有三个零点,求t的值;
(Ⅲ)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,试求a的取值范围.
(Ⅰ)证明a>1时函数的导数大于0. (Ⅱ)先判断函数f(x)的极小值,再由y=|f(x)-t|-1有三个零点,所以方程f(x)=t±1有三个根,根据t-1应是f(x)的极小值,解出t. (Ⅲ)f(x)的最大值减去f(x)的最小值大于或等于e-1,由单调性知,f(x)的最大值是f(1) 或f(-1),最小值f(0)=1,由f(1)-f(-1)的单调性,判断f(1)与f(-1)的大小关系,再由 f(x)的最大值减去最小值f(0)大于或等于e-1求出a的取值范围. 【解析】 (Ⅰ)f′(x)=axlna+2x-lna=2x+(ax-1)lna  (3分) 由于a>1,故当x∈(0,+∞)时,lna>0,ax-1>0,所以f′(x)>0, 故函数f(x)在(0,+∞)上单调递增  (5分) (Ⅱ)当a>0,a≠1时,因为f′(0)=0,且f(x)在(0,+∞)上单调递增, 故f′(x)=0有唯一解x=0(7分) 所以x,f′(x),f(x)的变化情况如下表所示: 又函数y=|f(x)-t|-1有三个零点,所以方程f(x)=t±1有三个根, 而t+1>t-1,所以t-1=(f(x))min=f(0)=1,解得t=2;(11分) (Ⅲ)因为存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1, 所以当x∈[-1,1]时,|(f(x))max-(f(x))min| =(f(x))max-(f(x))min≥e-1,(12分) 由(Ⅱ)知,f(x)在[-1,0]上递减,在[0,1]上递增, 所以当x∈[-1,1]时,(f(x))min=f(0)=1, (f(x))max=max{f(-1),f(1)}, 而, 记, 因为(当t=1时取等号), 所以在t∈(0,+∞)上单调递增,而g(1)=0, 所以当t>1时,g(t)>0;当0<t<1时,g(t)<0, 也就是当a>1时,f(1)>f(-1); 当0<a<1时,f(1)<f(-1)(14分) ①当a>1时,由f(1)-f(0)≥e-1⇒a-lna≥e-1⇒a≥e, ②当0<a<1时,由, 综上知,所求a的取值范围为.(16分)
复制答案
考点分析:
相关试题推荐
已知{an}为递增的等比数列,且{a1,a3,a5}⊂{-10,-6,-2,0,1,3,4,16}.
(I)求数列{an}的通项公式;
(II)是否存在等差数列{bn},使得a1bn+a2bn-1+a3bn-2+…+anb1=2n+1-n-2对一切n∈N*都成立?若存在,求出bn;若不存在,说明理由.
查看答案
定义区间(m,n),[m,n],(m,n],[m,n)的长度均为n-m,其中n>m.
(1)若关于x的不等式2ax2-12x-3>0的解集构成的区间的长度为manfen5.com 满分网,求实数a的值;
(2)已知manfen5.com 满分网,若A∩B构成的各区间长度和为6,求实数t的取值范围.
查看答案
某沿海地区养殖的一种特色海鲜上市时间仅能持续5个月,预测上市初期和后期会因供不应求使价格呈持续上涨态势,而中期又将出现供大于求使价格连续下跌.现有三种价格模拟函数:
①f(x)=p•qx
②f(x)=px2+qx+1;
③f(x)=x(x-q)2+p.(以上三式中p、q均为常数,且q>1)
(I)为准确研究其价格走势,应选哪种价格模拟函数,为什么?
(Ⅱ)若f(0)=4,f(2)=6,求出所选函数f(x)的解析式(注:函数定义域是[0,5].其中x=0表示8月1日,x=1表示9月1日,…,以此类推);
(Ⅲ)为保证养殖户的经济效益,当地政府计划在价格下跌期间积极拓宽外销,请你预测该海鲜将在哪几个月份内价格下跌.
查看答案
已知函数f(x)=x2-2(n+1)x+n2+5n-7.
(Ⅰ)设函数y=f(x)的图象的顶点的纵坐标构成数列{an},求证:{an}为等差数列;
(Ⅱ)设函数y=f(x)的图象的顶点到x轴的距离构成数列{bn},求{bn}的前n项和Sn
查看答案
已知等式:cos261°+sin231°+cos61°sin31°=acos220°+sin210°-cos20°sin10°=a.
(1)根据以上所给的等式写出一个具有一般性的等式,并指出实数a的值;
(2)证明你所写的等式.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.