满分5 > 高中数学试题 >

已知函数. (Ⅰ)若f(x)在x=1处取得极大值,求实数a的值; (Ⅱ)若∀m∈...

已知函数manfen5.com 满分网
(Ⅰ)若f(x)在x=1处取得极大值,求实数a的值;
(Ⅱ)若∀m∈R,直线y=kx+m都不是曲线y=f(x)的切线,求k的取值范围;
(Ⅲ)若a>-1,求f(x)在区间[0,1]上的最大值.
(Ⅰ)求导数,确定函数的单调性,利用f(x)在x=1处取得极大值,可求实数a的值; (II)求导数,根据∀m∈R,直线y=kx+m都不是曲线y=f(x)的切线,可得对x∈R成立,即使f'(x)的最小值大于k; (III)分类讨论,确定函数在区间[0,1]上的单调性,从而可求函数的最大值. 【解析】 (Ⅰ)因为 f'(x)=x2-(2a+1)x+(a2+a)=(x-a)[x-(a+1)]…(2分) 令f'(x)=0,得x1=(a+1),x2=a 所以f'(x),f(x)随x的变化情况如下表: x (-∞,a) a (a,a+1) a+1 (a+1,+∞) f'(x) + - + f(x) 极大值 极小值 …(4分) 因为f(x)在x=1处取得极大值,所以a=1…(5分) (II)求导数可得…(6分) 因为∀m∈R,直线y=kx+m都不是曲线y=f(x)的切线,所以对x∈R成立…(7分) 所以只要f'(x)的最小值大于k,所以…(8分) (III)因为a>-1,所以a+1>0, 当a≥1时,f'(x)≥0对x∈[0,1]成立,所以当x=1时,f(x)取得最大值…(9分) 当0<a<1时,在x∈(0,a)时,f'(x)>0,f(x)单调递增,在x∈(a,1)时,f'(x)<0,f(x)单调递减,所以当x=a时,f(x)取得最大值…(10分) 当a=0时,在x∈(0,1)时,f'(x)<0,f(x)单调递减,所以当x=0时,f(x)取得最大值f(0)=0…(11分) 当-1<a<0时,在x∈(0,a+1)时,f'(x)<0,f(x)单调递减,在x∈(a+1,1)时,f'(x)>0,f(x)单调递增,又, 当时,f(x)在x=1取得最大值 当时,f(x)在x=0取得最大值f(0)=0 当时,f(x)在x=0,x=1处都取得最大值0.…(14分) 综上所述,当a≥1或时,f(x)取得最大值;当0<a<1时,f(x)取得最大值;当时,f(x)在x=0,x=1处都取得最大值0;当时,f(x)在x=0取得最大值f(0)=0.
复制答案
考点分析:
相关试题推荐
设数列{an}的前n项和为Sn,已知Sn=2an-3n(n∈N*).
(1)求数列{an}的通项公式an
(2)问数列{an}中是否存在某三项,它们可以构成一个等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由.
查看答案
如图,侧棱垂直底面的三棱柱ABC-A1B1C1中,AB⊥AC,AA1+AB+AC=3,AB=AC=t(t>0),P是侧棱AA1上的动点.
(1)当AA1=AB=AC时,求证:A1C⊥平面ABC1
(2)试求三棱锥P-BCC1的体积V取得最大值时的t值.

manfen5.com 满分网 查看答案
设△ABC的内角A,B,C所对的边分别为a,b,c,已知manfen5.com 满分网
(Ⅰ)求△ABC的面积;
(Ⅱ)求sin(C-A)的值.
查看答案
设圆上点A(2,3)关于直线l1:x+2y=0的对称点B仍在圆上,且该圆的圆心在直线l2:4x+5y=9上,
(1)求B点的坐标;   
(2)求圆的方程.
查看答案
数列{an}中,如果存在ak,使得“ak>ak-1且ak>ak+1”成立(其中k≥2,k∈N*),则称ak为{an}的一个峰值.若an=tlnn-n,且{an}不存在峰值,则实数t的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.