满分5 > 高中数学试题 >

观察(x2)′=2x,(x4)′=4x3,y=f(x),由归纳推理可得:若定义在...

观察(x2)′=2x,(x4)′=4x3,y=f(x),由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=( )
A.f(x)
B.-f(x)
C.g(x)
D.-g(x)
首先由给出的例子归纳推理得出偶函数的导函数是奇函数, 然后由g(x)的奇偶性即可得出答案. 【解析】 由给出的例子可以归纳推理得出: 若函数f(x)是偶函数,则它的导函数是奇函数, 因为定义在R上的函数f(x)满足f(-x)=f(x), 即函数f(x)是偶函数, 所以它的导函数是奇函数,即有g(-x)=-g(x), 故选D.
复制答案
考点分析:
相关试题推荐
若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为( )
A.内切
B.相交
C.外切
D.相离
查看答案
设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
查看答案
如果抛物线y2=ax的准线是直线x=-1,那么它的焦点坐标为( )
A.(1,0)
B.(2,0)
C.(3,0)
D.(-1,0)
查看答案
设圆M的方程为(x-3)2+(y-2)2=2,直线L的方程为x+y-3=0,点P的坐标为(2,1),那么( )
A.点P在直线L上,但不在圆M上
B.点P在圆M上,但不在直线L上
C.点P既在圆M上,又在直线L上
D.点P既不在直线L上,也不在圆M上
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.