满分5 > 高中数学试题 >

椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率e=. ...

椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率e=manfen5.com 满分网
(Ⅰ)求椭圆E的方程;
(Ⅱ)求∠F1AF2的角平分线所在直线的方程.

manfen5.com 满分网
(Ⅰ)设椭圆方程为+=1,把点A(2,3)代入椭圆方程,把离心率e=用a,c表示,再根据b2=a2-c2,求出a2,b2,得椭圆方程; (Ⅱ)可以设直线l上任一点坐标为(x,y),根据角平分线上的点到角两边距离相等得=|x-2|. 【解析】 (Ⅰ)设椭圆E的方程为 +=1 由e=,得,b2=a2-c2=3c2,∴ 将A(2,3)代入,有,解得:c=2, ∴椭圆E的方程为 (Ⅱ)由(Ⅰ)知F1(-2,0),F2(2,0),所以直线AF1的方程为y=(x+2), 即3x-4y+6=0,直线AF2的方程为x=2,由椭圆E的图形知,∠F1AF2的角平分线所在直线的斜率为正数 设P(x,y)为∠F1AF2的角平分线所在直线上任一点,则有=|x-2| 若3x-4y+6=-5x+10,得x+2y-8=0,其斜率为负,不合题意,舍去. 于是3x-4y+6=5x-10,即2x-y-1=0. 所以,∠F1AF2的角平分线所在直线的方程为2x-y-1=0
复制答案
考点分析:
相关试题推荐
设函数f(x)=6x3+3(a+2)x2+2ax.
(1)若f(x)的两个极值点为x1,x2,且x1x2=1,求实数a的值;
(2)是否存在实数a,使得f(x)是(-∞,+∞)上的单调函数?若存在,求出a的值;若不存在,说明理由.
查看答案
过双曲线manfen5.com 满分网的右焦点F,倾斜角为30°的直线交此双曲线于A,B两点,求|AB|.

manfen5.com 满分网 查看答案
已知p:|x-4|≤6,q:x2-2x+1-m2≤0(m>0),若¬p是¬q的必要而不充分条件,求实数m的取值范围.
查看答案
若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(-1)=    查看答案
已知双曲线manfen5.com 满分网的一条渐近线方程是manfen5.com 满分网,它的一个焦点与抛物线y2=16x的焦点相同.则双曲线的方程为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.