(Ⅰ)由{an}是公比为正数的等比数列,设其公比,然后利用a1=2,a3=a2+4可求得q,即可求得{an}的通项公式
(Ⅱ)由{bn}是首项为1,公差为2的等差数列 可求得bn=1+(n-1)×2=2n-1,然后利用等比数列与等差数列的前n项和公式即可求得数列{an+bn}的前n项和Sn.
【解析】
(Ⅰ)∵设{an}是公比为正数的等比数列
∴设其公比为q,q>0
∵a3=a2+4,a1=2
∴2×q2=2×q+4 解得q=2或q=-1
∵q>0
∴q=2
∴{an}的通项公式为an=2×2n-1=2n
(Ⅱ)∵{bn}是首项为1,公差为2的等差数列
∴bn=1+(n-1)×2=2n-1
∴数列{an+bn}的前n项和Sn=+=2n+1-2+n2=2n+1+n2-2