满分5 > 高中数学试题 >

在直三棱柱ABC-A1B1C1中,AB=AC=AA1=3a,BC=2a,D是BC...

在直三棱柱ABC-A1B1C1中,AB=AC=AA1=3a,BC=2a,D是BC的中点,F是C1C上一点,且CF=2a.
(1)求证:B1F⊥平面ADF;
(2)求三棱锥D-AB1F的体积;
(3)试在AA1上找一点E,使得BE∥平面ADF.

manfen5.com 满分网
(1)证明直线与平面垂直,关键要找到两条相交直线与之都垂直,通过证明AD⊥平面BCC1B1得AD⊥B1F,然后在矩形BCC1B1中通过证明Rt△DCF≌Rt△FC1B1得B1F⊥FD,问题从而得证. (2)利用等体积法,将要求的三棱锥D-AB1F的体积转化为高和底面都已知的三棱锥A-B1DF体积来求. (3)本问是个探究性问题,通过线段的长度关系和平行关系探讨线面平行. (1)证明:∵AB=AC,D为BC中点∴AD⊥BC, 又直三棱柱中:BB1⊥底面ABC,AD⊂底面ABC, ∴AD⊥BB1, ∴AD⊥平面BCC1B1, ∵B1F⊂平面BCC1B1 ∴AD⊥B1F. 在矩形BCC1B1中:C1F=CD=a,CF=C1B1=2a ∴Rt△DCF≌Rt△FC1B1, ∴∠CFD=∠C1B1F ∴∠B1FD=90°,即B1F⊥FD, ∵AD∩FD=D, ∴B1F⊥平面AFD; (2)【解析】 ∵AD⊥平面BCC1B1 ∴ =; (3)当AE=2a时,BE∥平面ADF. 证明:连EF,EC,设EC∩AF=M,连DM, ∵AE=CF=2a ∴AEFC为矩形, ∴M为EC中点, ∵D为BC中点, ∴MD∥BE, ∵MD⊂平面ADF,BE⊄平面ADF ∴BE∥平面ADF.
复制答案
考点分析:
相关试题推荐
已知直角△OAB的直角顶点O为原点,点A、B在抛物线y2=2px(p>0)上,原点在直线AB上的射影为点D(2,1),求抛物线的方程.
查看答案
已知两直线l1:ax-by+4=0,l2:(a-1)x+y+b=0.求分别满足下列条件的a,b的值.
(1)直线l1过点(-3,-1),并且直线l1与l2垂直;
(2)直线l1与直线l2平行,并且坐标原点到l1,l2的距离相等.
查看答案
已知命题p:x2-7x+10≤0,命题q:x2-2x+1-a2≤0(a>0),若p是q的充分不必要条件,求a的取值范围.
查看答案
若F是双曲线manfen5.com 满分网的一个焦点,P1、P2、P3、P4是双曲线上同一支上任意4个不同的点,且manfen5.com 满分网,则manfen5.com 满分网=    查看答案
在长方体ABCD-A1B1C1D1中,B1C和C1D与底面A1B1C1D1所成的角分别为60°和45°,则异面直线B1C和C1D所成的角的余弦值为     查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.