满分5 > 高中数学试题 >

已知在四面体ABCD中,E,F分别是AC,BD的中点,若AB=2,CD=4,EF...

已知在四面体ABCD中,E,F分别是AC,BD的中点,若AB=2,CD=4,EF⊥AB,则EF与CD所成的角的度数为( )
A.90°
B.45°
C.60°
D.30°
设G为AD的中点,连接GF,GE,利用三角形中位线定理,可证出EF⊥GF且∠FEG或其补角即为EF与CD所成角.最后在Rt△EFG中,利用正弦的定义算出∠GEF=30°,即得EF与CD所成的角的度数. 【解析】 设G为AD的中点,连接GF,GE, 则GF,GE分别为△ABD,△ACD的中线. 由此可得,GF∥AB且GF=AB=1, GE∥CD,且GE=CD=2, ∴∠FEG或其补角即为EF与CD所成角. 又∵EF⊥AB,GF∥AB,∴EF⊥GF 因此,Rt△EFG中,GF=1,GE=2, 由正弦的定义,得sin∠GEF==,可得∠GEF=30°. ∴EF与CD所成的角的度数为30° 故选:D
复制答案
考点分析:
相关试题推荐
过点(-1,3)且垂直于直线x-2y+3=0的直线方程为( )
A.2x+y-1=0
B.2x+y-5=0
C.x+2y-5=0
D.x-2y+7=0
查看答案
算法的三种基本结构是( )
A.顺序结构、模块结构、条件结构
B.顺序结构、条件结构、循环结构
C.顺序结构、循环结构、模块结构
D.模块结构、条件结构、循环结构
查看答案
1010(2)转化成十进制数是( )
A.8
B.9
C.10
D.11
查看答案
如图,在以点O为圆心,AB为直径的半圆中,D为半圆弧的中心,P为半圆弧上一点,且AB=4,∠POB=30°,双曲线C以A,B为焦点且经过点P.
(1)建立适当的平面直角坐标系,求双曲线C的方程;
(2)设过点D的直线l与双曲线C相交于不同两点E、F,若△OEF的面积不小于manfen5.com 满分网,求直线l的斜率的取值范围.

manfen5.com 满分网 查看答案
已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y-29=0相切.
(Ⅰ)求圆的方程;
(Ⅱ)设直线ax-y+5=0(a>0)与圆相交于A,B两点,求实数a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(-2,4),若存在,求出实数a的值;若不存在,请说明理由.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.