(1)由数列{an}的前n项和为Sn,点(n,)(n∈N*)均在函数y=x+1的图象上,知,,由此能求出数列{an}的通项公式.
(2)由=8,知b2=2,由b1=1,知q=2,从而能求出{bn}的通项公式和前n项和Gn.
(3)由an=2n,,知an•bn=2n•2n-1=n•2n,由此能求出{an•bn}的前n项和Tn.
【解析】
(1)∵数列{an}的前n项和为Sn,
点(n,)(n∈N*)均在函数y=x+1的图象上,
∴,,
当n≥2时,an=Sn-Sn-1=(n2+n)-[(n-1)2+(n-1)]=2n,
当n=1时,a1=S1=2,
∴an=2n.
(2)∵=8,
∴b2=2,
∵b1=1,∴q==2,
∴=2n-1,
∴Gn===2n-1.
(3)∵an=2n,,
∴an•bn=2n•2n-1=n•2n,
Tn=1×21+2×22+3×23+…+(n-1)×2n-1+n×2n,①
∴2Tn=1×22+2×23+3×24+…+(n-1)×2n+n×2n+1,②
①-②,得-Tn=21+22+23+24+…+2n-1+2n-n×2n+1
=-n×2n+1,
=2n+1-2-n•2n+1,
∴Tn=(n-1)•2n+1+2.