满分5 > 高中数学试题 >

函数f(x)=的零点个数为( ) A.0 B.1 C.2 D.3

函数f(x)=manfen5.com 满分网的零点个数为( )
A.0
B.1
C.2
D.3
先判断函数的单调性,由于在定义域上两个增函数的和仍为增函数,故函数f(x)为单调增函数,而f(0)<0,f()>0 由零点存在性定理可判断此函数仅有一个零点 【解析】 函数f(x)的定义域为[0,+∞) ∵y=在定义域上为增函数,y=-在定义域上为增函数 ∴函数f(x)=在定义域上为增函数 而f(0)=-1<0,f(1)=>0 故函数f(x)=的零点个数为1个 故选B
复制答案
考点分析:
相关试题推荐
与角315°终边相同的角是( )
A.495°
B.-45°
C.-135°
D.450°
查看答案
已知函数f(x)=-x3+ax2+bx+c在(-∞,0)上是减函数,在(0,1)上是增函数,函数f(x)在R上有三个零点.
(1)求b的值;
(2)若1是其中一个零点,求f(2)的取值范围;
(3)若a=1,g(x)=f′(x)+3x2+lnx,试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由.
查看答案
已知等差数列{an}的前n项和为Sn,且S10=55,S20=210.
(1)求数列{an}的通项公式;
(2)设manfen5.com 满分网,是否存在m、k(k>m≥2,k,m∈N*),使得b1、bm、bk成等比数列.若存在,求出所有符合条件的m、k的值;若不存在,请说明理由.
查看答案
动点P与点F(1,0)的距离和它到直线l:x=-1的距离相等,记点P的轨迹为曲线C1.圆C2的圆心T是曲线C1上的动点,圆C2与y轴交于M,N两点,且|MN|=4.
(1)求曲线C1的方程;
(2)设点A(a,0)(a>2),若点A到点T的最短距离为a-1,试判断直线l与圆C2的位置关系,并说明理由.
查看答案
如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,A1A=AB=2,BC=3.
(1)求证:AB1∥平面BC1D;
(2) 求四棱锥B-AA1C1D的体积.

manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.