满分5 > 高中数学试题 >

已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且x∈[0,2]时,...

已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且x∈[0,2]时,f(x)=log2(x+1),甲,乙,丙,丁四位同学有下列结论:
甲:f(3)=1;
乙:函数f(x)在[-6,-2]上是增函数;
丙:函数f(x)关于直线x=4对称;
丁:若m∈(0,1),则关于x的方程f(x)-m=0在[-8,8]上所有根之和为-8.
其中正确的是( )
A.甲,乙,丁
B.乙,丙
C.甲,乙,丙
D.甲,丁
取x=1,得f(3)=-f(-3)=1;f(x-4)=f(-x),则f(x-2)=f(-x-2);奇函数f(x),x∈[-2,2]时,函数为单调增函数,利用函数f(x)关于直线x=-2对称,可得函数f(x)在[-6,-2]上是减函数;若m∈(0,1),则关于x的方程f(x)-m=0在[-8,8]上有4个根,其中两根的和为-6×2=-12,另两根的和为2×2=4,故可得结论. 【解析】 取x=1,得f(1-4)=-f(1)=-=-1,所以f(3)=-f(-3)=1,故甲的结论正确; 定义在R上的奇函数f(x)满足f(x-4)=-f(x),则f(x-4)=f(-x),∴f(x-2)=f(-x-2),∴函数f(x)关于直线x=-2对称,故丙不正确; 奇函数f(x),x∈[0,2]时,f(x)=log2(x+1),∴x∈[-2,2]时,函数为单调增函数,∵函数f(x)关于直线x=-2对称,∴函数f(x)在[-6,-2]上是减函数,故乙不正确; 若m∈(0,1),则关于x的方程f(x)-m=0在[-8,8]上有4个根,其中两根的和为-6×2=-12,另两根的和为2×2=4,所以所有根之和为-8.故丁正确 故选D
复制答案
考点分析:
相关试题推荐
定义在R上的函数f(x)满足f(x+6)=f(x),当-3≤x<-1时,f(x)=-(x+2)2,当-1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2012)=( )
A.335
B.338
C.1678
D.2012
查看答案
设函数f′(x)=x2+3x-4,则y=f(x+1)的单调减区间为( )
A.(-4,1)
B.(-5,0)
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
函数f(x)=sin4(x+manfen5.com 满分网)-sin4(x-manfen5.com 满分网)是( )
A.周期为π的奇函数
B.周期为π的偶函数
C.周期为2π的奇函数
D.周期为2π的偶函数
查看答案
已知等差数列an的前n项和为Sn,且a2+a4=-30,a1+a4+a7=-39,则使得Sn达到最小值的n是( )
A.8
B.9
C.10
D.11
查看答案
下列命题中正确的是( )
A.若命题p为真命题,命题q为假命题,则命题“p∧q”为真命题
B.命题“若xy=0,则x=0”的否命题为:“若xy=0,则x≠0”
C.“manfen5.com 满分网”是“manfen5.com 满分网”的充分不必要条件
D.命题“∀x∈R,2x>0”的否定是“manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.