满分5 > 高中数学试题 >

已知三次函数f(x)的导函数f′(x)=3x2-3ax,f(0)=b,a、b为实...

已知三次函数f(x)的导函数f′(x)=3x2-3ax,f(0)=b,a、b为实数.
(1)若曲线y=f(x)在点(a+1,f(a+1))处切线的斜率为12,求a的值;
(2)若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,且1<a<2,求函数f(x)的解析式.
(1)求出x=a+1处的导数值即切线的斜率,令其为12,列出方程,求出a的值. (2)据导函数的形式设出f(x),求出导函数为0的两个根,判断出根与定义域的关系,求出函数的最值,列出方程求出f(x)的解析式. 【解析】 (1)由导数的几何意义f′(a+1)=12 ∴3(a+1)2-3a(a+1)=12 ∴3a=9∴a=3 (2)∵f′(x)=3x2-3ax,f(0)=b ∴ 由f′(x)=3x(x-a)=0得x1=0,x2=a ∵x∈[-1,1],1<a<2 ∴当x∈[-1,0)时,f′(x)>0,f(x)递增;当x∈(0,1]时,f′(x)<0,f(x)递减. ∴f(x)在区间[-1,1]上的最大值为f(0) ∵f(0)=b, ∴b=1 ∵, ∴f(-1)<f(1) ∴f(-1)是函数f(x)的最小值, ∴ ∴ ∴f(x)=x3-2x2+1
复制答案
考点分析:
相关试题推荐
数列{an}满足an+1+an=4n-3(n∈N*
(Ⅰ)若{an}是等差数列,求其通项公式;
(Ⅱ)若{an}满足a1=2,Sn为{an}的前n项和,求S2n+1
查看答案
已知向量manfen5.com 满分网与 manfen5.com 满分网共线,设函数y=f(x).
(1)求函数f(x)的周期及最大值;
(2)已知锐角△ABC中的三个内角分别为A、B、C,若有manfen5.com 满分网,边BC=manfen5.com 满分网manfen5.com 满分网,求△ABC的面积.
查看答案
设集合A={x|y=manfen5.com 满分网},B={x|manfen5.com 满分网>0}
(1)求集合A∩B
(2)若关于x的不等式2x2+ax+b<0的解集是B,求a,b的值.
查看答案
已知c>0,设命题P:函数y=-c-x为减函数;命题q:当x∈[manfen5.com 满分网,3]时,函数f(x)=x+manfen5.com 满分网manfen5.com 满分网恒成立.如果p或q为真命题,p且q为假命题,求c的取值范围.
查看答案
①函数manfen5.com 满分网在[0,π]上是减函数;
②点A(1,1)、B(2,7)在直线3x-y=0两侧;
③数列{an}为递减的等差数列,a1+a5=0,设数列{an}的前n项和为Sn,则当n=4时,Sn取得最大值;
④定义运算manfen5.com 满分网则函数manfen5.com 满分网的图象在点manfen5.com 满分网处的切线方程是6x-3y-5=0.
其中正确命题的序号是    (把所有正确命题的序号都写上). 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.