如图,已知定点F(1,0),动点P在y轴上运动,过点P作PM⊥PF并交x轴于M点,延长MP到N,使|PN|=|PM|.
(1)求动点N的轨迹C的方程;
(2)直线l与动点N的轨迹C交于A、B两点,若
=-4,且
≤|AB|≤
,求直线l的斜率的取值范围.
考点分析:
相关试题推荐
已知椭圆
的离心率为
,椭圆上任意一点到右焦点F的距离的最大值为
.
(I)求椭圆的方程;
(Ⅱ)已知点C(m,0)是线段OF上一个动点(O为坐标原点),是否存在过点F且与x轴不垂直的直线l与椭圆交于A、B两点,使得|AC|=|BC|,并说明理由.
查看答案
已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且
,M是PB的中点.
(1)求AC与PB所成的角的余弦值;
(2)求二面角P-AC-M的余弦值;
(3)在棱PC上是否存在点N,使DN∥平面AMC,若存在,确定点N位置;若不存在,说明理由.
查看答案
已知圆C:x
2+y
2+Dx+Ey+3=0,圆C关于直线x+y-1=0对称,圆心在第二象限,半径为
(Ⅰ)求圆C的方程;
(Ⅱ)已知不过原点的直线l与圆C相切,且在x轴、y轴上的截距相等,求直线l的方程.
查看答案
为了让学生了解更多“奥运会”知识,某中学举行了一次“奥运知识竞赛”,共有800名学生参加了这次竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表,解答下列问题:
(1)若用系统抽样的方法抽取50个样本,现将所有学生随机地编号为000,001,002,…,799,试写出第五组第一位学生的编号;
(2)填充频率分布表的空格(直接填在表格内),并作出频率分布直方图;
(3)若成绩在85.5~95.5分的学生为二等奖,问参赛学生中获得二等奖的学生约为多少人?
分组 | 频数 | 频率 |
60.5~70.5 | | 0.16 |
70.5~80.5 | 10 | |
80.5~90.5 | 18 | 0.36 |
90.5~100.5 | | |
合计 | 50 | |
查看答案
命题p:方程x
2-x+a
2-6a=0,有一正根和一负根.命题q:函数y=x
2+(a-3)x+1的图象与x轴无公共点.若命题“p或q”为真命题,而命题“p且q”为假命题,求实数a的取值范围.
查看答案