满分5 > 高中数学试题 >

如图,已知定点F(1,0),动点P在y轴上运动,过点P作PM⊥PF并交x轴于M点...

如图,已知定点F(1,0),动点P在y轴上运动,过点P作PM⊥PF并交x轴于M点,延长MP到N,使|PN|=|PM|.
(1)求动点N的轨迹C的方程;
(2)直线l与动点N的轨迹C交于A、B两点,若manfen5.com 满分网=-4,且manfen5.com 满分网≤|AB|≤manfen5.com 满分网,求直线l的斜率的取值范围.

manfen5.com 满分网
(1)设出动点N,则M,P的坐标可表示出,利用PM⊥PF,kPMkPF=-1,求得x和y的关系式,即N的轨迹方程. (2)设出直线l的方程,A,B的坐标,根据=-4,推断出x1x2+y1y2=-4进而求得y1y2的值,把直线与抛物线方程联立消去x求得y1y2的表达式,进而气的b和k的关系式,利用弦长公式表示出|AB|2,根据|AB|的范围,求得k的范围. 【解析】 (1)设动点N(x,y),则M(-x,0),P(0,)(x>0) ∵PM⊥PF,∴kPMkPF=-1,即,∴y2=4x(x>0)即为所求. (2)设直线l方程为y=kx+b,l与抛物线交于点A(x1,y1)、B(x2,y2), 则由=-4,得x1x2+y1y2=-4,即+y1y2=-4,∴y1y2=-8, 由ky2-4y+4b=0(其中k≠0),∴y1y2==-8,b=-2k, 当△=16-16kb=16(1+2k2)>0时, |AB|2=(1+)(y2-y1)2=[(y1+y2)2-4(y1y2)]=(+32) 由题意,得16×6(+32)≤16×30 解得,≤k2≤1,≤k≤1或-1≤k≤-, 即所求k的取值范围是[-1,-]∪[,1].
复制答案
考点分析:
相关试题推荐
已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,椭圆上任意一点到右焦点F的距离的最大值为manfen5.com 满分网
(I)求椭圆的方程;
(Ⅱ)已知点C(m,0)是线段OF上一个动点(O为坐标原点),是否存在过点F且与x轴不垂直的直线l与椭圆交于A、B两点,使得|AC|=|BC|,并说明理由.
查看答案
已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且manfen5.com 满分网,M是PB的中点.
(1)求AC与PB所成的角的余弦值;
(2)求二面角P-AC-M的余弦值;
(3)在棱PC上是否存在点N,使DN∥平面AMC,若存在,确定点N位置;若不存在,说明理由.

manfen5.com 满分网 查看答案
已知圆C:x2+y2+Dx+Ey+3=0,圆C关于直线x+y-1=0对称,圆心在第二象限,半径为manfen5.com 满分网
(Ⅰ)求圆C的方程;
(Ⅱ)已知不过原点的直线l与圆C相切,且在x轴、y轴上的截距相等,求直线l的方程.
查看答案
为了让学生了解更多“奥运会”知识,某中学举行了一次“奥运知识竞赛”,共有800名学生参加了这次竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表,解答下列问题:
(1)若用系统抽样的方法抽取50个样本,现将所有学生随机地编号为000,001,002,…,799,试写出第五组第一位学生的编号;
(2)填充频率分布表的空格(直接填在表格内),并作出频率分布直方图;
(3)若成绩在85.5~95.5分的学生为二等奖,问参赛学生中获得二等奖的学生约为多少人?
分组频数频率
60.5~70.50.16
70.5~80.510
80.5~90.5180.36
90.5~100.5
合计50

查看答案
命题p:方程x2-x+a2-6a=0,有一正根和一负根.命题q:函数y=x2+(a-3)x+1的图象与x轴无公共点.若命题“p或q”为真命题,而命题“p且q”为假命题,求实数a的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.