(1)设出数列的公差,利用等比中项的性质推断出a32=a1a9,利用等差数列的通项公式表示出等式求得a1=d,利用求和公式表示出
S5,建立等式求得a1和d另一等式,联立求得a1和d则数列的通项公式可得.
(2)把(1)中数列{an}的通项公式代入bn,整理后利用裂项法求得数列的前99项的和.
【解析】
(1)设数列{an}公差为d(d>0),
∵a1,a3,a9成等比数列,∴a32=a1a9.
(a1+2d)2=a1(a1+8d),d2=a1d.
∵d≠0,∴a1=d.①
∵S5=a52,∴5a1+•d=(a1+4d)2.②
由①②得a1=,d=.
∴an=+(n-1)×=n.
(2)bn=,
∴b1+b2+b3+…+b99=
[99+(1-)+(-)+(-)]
=(100-)=.