根据题意可设CB=1,CA=CC1=2,分别以CA、CC1、CB为x轴、y轴和z轴建立如图坐标系,得到A、B、B1、C1四个点的坐标,从而得到向量与的坐标,根据异面直线所成的角的定义,结合空间两个向量数量积的坐标公式,可以算出直线BC1与直线AB1夹角的余弦值.
【解析】
分别以CA、CC1、CB为x轴、y轴和z轴建立如图坐标系,
∵CA=CC1=2CB,∴可设CB=1,CA=CC1=2
∴A(2,0,0),B(0,0,1),B1(0,2,1),C1(0,2,0)
∴=(0,2,-1),=(-2,2,1)
可得•=0×(-2)+2×2+(-1)×1=-3,且=,=3,
向量与所成的角(或其补角)就是直线BC1与直线AB1夹角,
设直线BC1与直线AB1夹角为θ,则cosθ==
故选A