满分5 > 高中数学试题 >

某工厂去年某产品的年产量为100万只,每只产品的销售价为10元,固定成本为8元....

某工厂去年某产品的年产量为100万只,每只产品的销售价为10元,固定成本为8元.今年,工厂第一次投入100万元(科技成本),并计划以后每年比上一年多投入100万元(科技成本),预计产量年递增10万只,第n次投入后,每只产品的固定成本为manfen5.com 满分网(k>0,k为常数,n∈Z且n≥0),若产品销售价保持不变,第n次投入后的年利润为f(n)万元.
(1)求k的值,并求出f(n)的表达式;
(2)问从今年算起第几年利润最高?最高利润为多少万元?
(1)根据每只产品的固定成本为8元及关系式为,可求k的值,利用第n次投入后的年利润为f(n)万元,可建立函数关系式; (2)先由(1)可得利润函数,再用基本不等式求最高利润. 【解析】 (1)由,当n=0时,由题意,可得k=8, 所以f(n)=(100+10n). (2)由-80. 当且仅当=,即n=8时取等号,所以第8年工厂的利润最高,最高为520万元
复制答案
考点分析:
相关试题推荐
已知△ABC中,A、B、C分别为三个内角,a、b、c为所对边,2manfen5.com 满分网(sin2A-sin2C)=(a-b)sinB,△ABC的外接圆半径为manfen5.com 满分网
(1)求角C;
(2)求△ABC面积S的最大值.
查看答案
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<manfen5.com 满分网)(x∈R)的部分图象如图所示.
(Ⅰ)求f(x)的解析式;
(Ⅱ)设manfen5.com 满分网,且manfen5.com 满分网,求g(α)的值.

manfen5.com 满分网 查看答案
已知等差数列{an}的首项a1=1,公差d≠0,且第二项、第四项、第十四项分别是等比数列{bn}的第二项、第三项、第四项
(1)求数列{an}与{bn}的通项公式;
(2)设数列{cn}满足cn=16+an,求数列{cn}的前n项和Sn的最大值.
查看答案
“∃a∈[1,3],使ax2+(a-2)x-2>0”是真命题,则实数x的取值范围是    查看答案
我们对数列作如下定义,如果∀n∈N*,都有anan+1an+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{an}是等积数列,且a1=1,a2=2,公积为6,则a1+a2+a3+…+a9=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.