满分5 > 高中数学试题 >

已知函数f(x)=x3-ax2-3x (1)若f(x)在区间[1,+∞)上是增函...

已知函数f(x)=x3-ax2-3x
(1)若f(x)在区间[1,+∞)上是增函数,求实数a的取值范围;
(2)若x=-manfen5.com 满分网是f(x)的一个极值点,求f(x)在[1,a]上的最大值;
(3)在(2)的条件下,是否存在实数b,使得函数g(x)=bx的图象与函数f(x)的图象恰有3个交点,若存在,请求出实数b的取值范围;若不存在,试说明理由.
(1)求导函数,可得f′(x)=3x2-2ax-3,利用f(x)在区间[1,+∞)上是增函数,可得3x2-2ax-3≥0在区间[1,+∞)上恒成立,从而可求实数a的取值范围; (2)依题意x=-是f(x)的一个极值点,所以,从而可得f(x)=x3-4x2-3x,利用导数确定函数的单调性与极值,从而可求f(x)在[1,4]上的最大值; (3)函数g(x)=bx的图象与函数f(x)的图象恰有3个交点,即方程x3-4x2-3x=bx恰有3个不等实根,即方程x2-4x-3-b=0有两个非零不等实根,从而可求实数b的取值范围 【解析】 (1)求导函数,可得f′(x)=3x2-2ax-3 ∵f(x)在区间[1,+∞)上是增函数, ∴f′(x)≥0在区间[1,+∞)上恒成立, 即3x2-2ax-3≥0在区间[1,+∞)上恒成立, 则必有且f′(1)=-2a≥0, ∴a≤0(5分) (2)依题意x=-是f(x)的一个极值点,∴ 即 ∴a=4,∴f(x)=x3-4x2-3x(6分) 令f′(x)=3x2-8x-3=0,得则 当x变化时,f′(x),f(x)的变化情况如下表: x 1 (1,3) 3 (3,4) 4 f′(x) - + f(x) -6 -18 -12 ∴f(x)在[1,4]上的最大值是f(1)=-6(10分) (3)函数g(x)=bx的图象与函数f(x)的图象恰有3个交点, 即方程x3-4x2-3x=bx恰有3个不等实根(12分) ∴x3-4x2-3x-bx=0恰有3个不等实根 ∵x=0是其中一个根, ∴方程x2-4x-3-b=0有两个非零不等实根, ∴ ∴b>-7,且b≠-3(14分)
复制答案
考点分析:
相关试题推荐
某工厂去年某产品的年产量为100万只,每只产品的销售价为10元,固定成本为8元.今年,工厂第一次投入100万元(科技成本),并计划以后每年比上一年多投入100万元(科技成本),预计产量年递增10万只,第n次投入后,每只产品的固定成本为manfen5.com 满分网(k>0,k为常数,n∈Z且n≥0),若产品销售价保持不变,第n次投入后的年利润为f(n)万元.
(1)求k的值,并求出f(n)的表达式;
(2)问从今年算起第几年利润最高?最高利润为多少万元?
查看答案
已知△ABC中,A、B、C分别为三个内角,a、b、c为所对边,2manfen5.com 满分网(sin2A-sin2C)=(a-b)sinB,△ABC的外接圆半径为manfen5.com 满分网
(1)求角C;
(2)求△ABC面积S的最大值.
查看答案
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<manfen5.com 满分网)(x∈R)的部分图象如图所示.
(Ⅰ)求f(x)的解析式;
(Ⅱ)设manfen5.com 满分网,且manfen5.com 满分网,求g(α)的值.

manfen5.com 满分网 查看答案
已知等差数列{an}的首项a1=1,公差d≠0,且第二项、第四项、第十四项分别是等比数列{bn}的第二项、第三项、第四项
(1)求数列{an}与{bn}的通项公式;
(2)设数列{cn}满足cn=16+an,求数列{cn}的前n项和Sn的最大值.
查看答案
“∃a∈[1,3],使ax2+(a-2)x-2>0”是真命题,则实数x的取值范围是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.