将方程的问题转化成函数图象的问题,画出可得.
【解析】
关于x的方程(x2-1)2-|x2-1|+k=0可化为(x2-1)2-(x2-1)+k=0(x≥1或x≤-1)(1)
或(x2-1)2+(x2-1)+k=0(-1<x<1)(2)
当k=-2时,方程(1)的解为±,方程(2)无解,原方程恰有2个不同的实根
当k=时,方程(1)有两个不同的实根±,方程(2)有两个不同的实根±,即原方程恰有4个不同的实根
当k=0时,方程(1)的解为-1,+1,±,方程(2)的解为x=0,原方程恰有5个不同的实根
当k=时,方程(1)的解为±,±,方程(2)的解为±,±,即原方程恰有8个不同的实根
故选A