满分5 > 高中数学试题 >

设C1,C2,…,Cn,…是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且...

设C1,C2,…,Cn,…是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线manfen5.com 满分网相切,对每一个正整数n,圆Cn都与圆Cn+1相互外切,以rn表示Cn的半径,已知{rn}为递增数列.
(Ⅰ)证明:{rn}为等比数列;
(Ⅱ)设r1=1,求数列manfen5.com 满分网的前n项和.manfen5.com 满分网
(1)求直线倾斜角的正弦,设Cn的圆心为(λn,0),得λn=2rn,同理得λn+1=2rn+1,结合两圆相切得圆心距与半径间的关系,得两圆半径之间的关系,即{rn}中rn+1与rn的关系,证明{rn}为等比数列; (2)利用(1)的结论求{rn}的通项公式,代入数列,然后用错位相减法求和. 【解析】 (1)将直线y=x的倾斜角记为,则有tanθ=,sinθ=, 设Cn的圆心为(λn,0),则由题意得知,得λn=2rn;同理 λn+1=2rn+1,从而λn+1=λn+rn+rn+1=2rn+1,将λn=2rn代入, 解得rn+1=3rn 故|rn|为公比q=3的等比数列. (Ⅱ)由于r1=1,q=3,故rn=3n-1,从而, 记, 则有Sn=1+2•3-1+3•3-2+…+n•31-n ①-②,得   =, ∴
复制答案
考点分析:
相关试题推荐
在△ABC中,角A、B、C所对的边分别是a、b、c,已知manfen5.com 满分网
(I)求cosC的值;
(II)若acosB+bcosA=2,求△ABC面积的最大值.
查看答案
已知数列{an}的前n项和为Sn,a1=1,且3an+1+2Sn=3(n为正整数)
(Ⅰ)求出数列{an}的通项公式;
(Ⅱ)若对任意正整数n,k≤Sn恒成立,求实数k的最大值.
查看答案
某单位决定投资3200元建一仓库(长方体状),高度恒定,它的后墙利用旧墙不花钱,正面用铁栅,每米长造价40元,两侧墙砌砖,每米造价45元,屋顶每平方米造价20元,试计算:
(1)仓库面积S的最大允许值是多少?
(2)为使S达到最大,而实际投资又不超过预算,那么正面铁栅应设计为多长?
查看答案
manfen5.com 满分网△ABC中,D在边BC上,且BD=2,DC=1,∠B=60°,∠ADC=150°,求AC的长及△ABC的面积.
查看答案
数列{an}是等差数列,Sn是前n项和,a4=3,S5=25
(1)求数列{an}的通项公式an
(2)设bn=|an|,求b1+b2+…+bn
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.