根据导数的图象,得到函数f(x)在区间(0,+∞)上是增函数.再由正弦函数的单调性和锐角三角形的性质,得到sinA>cosB,所以f(sinA)>f(cosB),得到正确选项.
【解析】
根据导数的图象,可知
当x>0时,f'(x)>0;当x<0时,f'(x)<0
∴f(x)在区间(0,+∞)上是增函数,在区间(-∞,0)上是减函数
∵△ABC为锐角三角形,
∴A、B都是锐角,且A+B>
由此可得0<-B<A<,
因为正弦函数在锐角范围是增函数,所以对上式的两边取正弦得sin(-B)<sinA
∴sinA>cosB,再结合f(x)在区间(0,+∞)上是增函数,得f(sinA)>f(cosB)
故选A