满分5 > 高中数学试题 >

已知函数f(x)=ax-1-lnx(a∈R). (Ⅰ)讨论函数f(x)在定义域内...

已知函数f(x)=ax-1-lnx(a∈R).
(Ⅰ)讨论函数f(x)在定义域内的极值点的个数;
(Ⅱ)已知函数f(x)在x=1处取得极值,且对∀x∈(0,+∞),f(x)≥bx-2恒成立,求实数b的取值范围.
(Ⅰ)由f(x)=ax-1-lnx可求得f′(x)=,对a分a≤0与a>0讨论f′(x)的符号,从而确定f(x)在其定义域(0,+∞)单调性与极值,可得答案; (Ⅱ)函数f(x)在x=1处取得极值,可求得a=1,于是有f(x)≥bx-2⇔1+-≥b,构造函数g(x)=1+-,g(x)min即为所求的b的值. 【解析】 (Ⅰ)∵f(x)=ax-1-lnx, ∴f′(x)=a-=,(1分) 当a≤0时,f'(x)≤0在(0,+∞)上恒成立,函数f(x)在(0,+∞)单调递减, ∴f(x)在(0,+∞)上没有极值点;(3分) 当a>0时,f'(x)≤0得 0<x≤,f'(x)≥0得, ∴f(x)在(0,]上递减,在[,+∞)上递增,即f(x)在处有极小值.(5分) ∴当a≤0时f(x)在(0,+∞)上没有极值点,当a>0时,f(x)在(0,+∞)上有一个极值点. (Ⅱ)∵函数f(x)在x=1处取得极值, ∴a=1, ∴f(x)≥bx-2⇔1+-≥b,(8分) 令g(x)=1+-,则g′(x)=--=-(2-lnx), 由g′(x)≥0得,x≥e2,由g′(x)≤0得,0<x≤e2, ∴g(x)在(0,e2]上递减,在[e2,+∞)上递增,(10分) ∴,即b≤1-.(12分)
复制答案
考点分析:
相关试题推荐
设正项等比数列{an}的首项manfen5.com 满分网,前n项和为Sn,且210S30-(210+1)S20+S10=0.
(Ⅰ)求{an}的通项;
(Ⅱ)求{nSn}的前n项和Tn
查看答案
已知向量manfen5.com 满分网=(sinx,manfen5.com 满分网),manfen5.com 满分网=(cosx,-1).
(1)当manfen5.com 满分网时,求cos2x-sin2x的值;
(2)设函数f(x)=2(manfen5.com 满分网)-manfen5.com 满分网,已知在△ABC中,内角A、B、C的对边分别为a、b、c,若a=manfen5.com 满分网,b=2,sinB=manfen5.com 满分网,求 f(x)+4cos(2A+manfen5.com 满分网)(x∈[0,manfen5.com 满分网])的取值范围.
查看答案
已知数列{an}的前n项和是Sn,且manfen5.com 满分网
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log3(1-Sn+1),求适合方程manfen5.com 满分网的n的值.
查看答案
manfen5.com 满分网已知函数f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,manfen5.com 满分网),其部分图象如图所示.
(I)求f(x)的解析式;
(II)求函数manfen5.com 满分网在区间manfen5.com 满分网上的最大值及相应的x值.
查看答案
设f(x)=asin2x+bcos2x,其中a,b∈R,ab≠0.若f(x)≤f(manfen5.com 满分网)|对一切x∈R恒成立,则
①f(manfen5.com 满分网)=0;
②|f(manfen5.com 满分网)|<|f(manfen5.com 满分网)|;
③f(x)既不是奇函数也不是偶函数;
④f(x)的单调递增区间是[kπ+manfen5.com 满分网,kπ+manfen5.com 满分网](k∈Z);
⑤经过点(a,b)的所有直线均与函数f(x)的图象相交.
以上结论正确的是    (写出所有正确结论的编号). 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.