满分5 > 高中数学试题 >

函数f(x)=x3+ax2+bx+c,曲线y=f(x)上以点P(1,f(1))为...

函数f(x)=x3+ax2+bx+c,曲线y=f(x)上以点P(1,f(1))为切点的切线方程为y=3x+1.
(1)若y=f(x)在x=-2时有极值,求f (x)的表达式;
(2)在(1)的条件下,求y=f(x)在[-3,1]上最大值.
(1)由f(x)=x3+ax2+bx+c求导数,利用导数几何意义结合切线方程及函数f(x)在x=-2时有极值即可列出关于a,b,c的方程,求得a,b,c的值,从而得到f (x)的表达式. (2)先求函数的导数f'(x),通过f'(x)>0,及f'(x)<0,得出函数的单调性,进一步得出函数的极值即可. 【解析】 (1)由f(x)=x3+ax2+bx+c求导数得f'(x)=3x2+2ax+b 过y=f(x)上点P(1,f(1))的切线方程为:y-f(1)=f'(1)(x-1)即y-(a+b+c+1)=(3+2a+b)(x-1) 故即 ∵有y=f(x)在x=-2时有极值,故f′(-2)=0 ∴-4a+b=-12…(3) 由(1)(2)(3)相联立解得a=2,b=-4,c=5 f(x)=x3+2x2-4x+5. (2)f'(x)=3x2+2ax+b=3x2+4x-4=(3x-2)(x+2) f(x)极大=f(-2)=(-2)3+2(-2)2-4(-2)+5=13f(1)=13+2×1-4×1+5=4 ∴f(x)在[-3,1]上最大值为13.
复制答案
考点分析:
相关试题推荐
已知f(x)=x2+ax-1nx,a∈R
(1)若a=0时,求函数y=f(x)在点(1,f(x))处的切线方程;
(2)若函数f(x)在[1,2]上是减函数,求实数a的取值范围.
查看答案
某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,manfen5.com 满分网(万元);当年产量不小于80千件时,manfen5.com 满分网(万元).现已知此商品每件售价为500元,且该厂年内生产此商品能全部销售完.
(1)写出年利润L(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
查看答案
已知等差数列{an}的首项a1=1,公差d>0,且a2,a5,a14成等比数列.
(1)求数列{an}的通项公式;
(2)设manfen5.com 满分网,求manfen5.com 满分网
查看答案
设函数manfen5.com 满分网
(1)求函数f(x)的单调减区间;
(2)若manfen5.com 满分网,求函数f(x)的值域.
查看答案
已知集合A={x|x2-2x-15≤0},B={x|x2-(2m-9)x+m2-9m≥0,m∈R}
(1)若A∩B=[-3,3],求实数m的值;
(2)设全集为R,若A⊆CRB,求实数m的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.