满分5 > 高中数学试题 >

①函数在[0,π]上是减函数; ②点A(1,1)、B(2,7)在直线3x-y=0...

①函数manfen5.com 满分网在[0,π]上是减函数;
②点A(1,1)、B(2,7)在直线3x-y=0两侧;
③数列{an}为递减的等差数列,a1+a5=0,设数列{an}的前n项和为Sn,则当n=4时,Sn取得最大值;
④定义运算manfen5.com 满分网则函数manfen5.com 满分网的图象在点manfen5.com 满分网处的切线方程是6x-3y-5=0.
其中正确命题的序号是    (把所有正确命题的序号都写上).
①,利用诱导公式将y=sin(x-)转化为y=-cosx,利用余弦函数的单调性即可判断其正误; ②,将A(1,1)、B(2,7)的坐标分别代入3x-y,观察乘积的符号即可判断; ③,由题意结合等差数列的性质可判断③的正误; ④,依题意可求得f(x)的解析式,从而可求得在点(1,)处的切线方程,继而可作出判断; 【解析】 ①,∵y=sin(x-)=-cosx,在[0,π]上是增函数,故①错误; ②,将A(1,1)、B(2,7)的坐标分别代入3x-y得(3×1-1)•(3×2-7)=-2<0,故点A(1,1)、B(2,7)在直线3x-y=0两侧,即②正确; ③,∵数列{an}为递减的等差数列,a1+a5=0,又a1+a5=2a3, ∴2a3=0, 故当n=2或3时Sn取得最大值,故③错误; ④,∵=a1b2-a2b1, ∴f(x)==x3+x2-x, ∴[f′(x)]|x=1=(x2+2x-1)|x=1=2, ∴f(x)的图象在点(1,)处的切线方程为:y-=2(x-1),整理得:6x-3y-5=0,故④正确; 综上所述,正确答案为②④. 故答案为:②④.
复制答案
考点分析:
相关试题推荐
设抛物线C:y2=16x的焦点为F,过点Q(-4,0)的直线l与抛物线C相交于A,B两点,若|QA|=2|QB|,则直线l的斜率k=    查看答案
设实数x,y满足约束条件manfen5.com 满分网,若目标函数z=manfen5.com 满分网+manfen5.com 满分网(a>0,b>0)的最大值为9,则d=manfen5.com 满分网的最小值为    查看答案
已知向量manfen5.com 满分网,则manfen5.com 满分网等于    查看答案
定义域为R的偶函数f(x)满足对∀∈R,有f(x+2)=f(x)-f(1),且当x∈[2,3]时,f(x)=-2x2+12x-18,若方程f(x)=loga(x+1)在(0,+∞)上恰有三个不同的根,则a的取值范围是( )
A.(0,manfen5.com 满分网
B.(0,manfen5.com 满分网
C.(manfen5.com 满分网manfen5.com 满分网
D.(manfen5.com 满分网manfen5.com 满分网
查看答案
已知A、B、C是平面上不共线的三点,O是三角形ABC的重心,动点P满足manfen5.com 满分网则点P一定为三角形ABC的( )
A.AB边中线的中点
B.AB边中线的三等分点(非重心)
C.重心
D.AB边的中点
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.