满分5 > 高中数学试题 >

如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PA...

如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,manfen5.com 满分网,BC=6
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)求二面角P-BD-A的大小.

manfen5.com 满分网
解法一:(I)由已知中底面为直角梯形的四棱锥P-ABCD中,∠ABC=90°,且PA⊥平面ABCD,我们结合线面垂直的性质及勾股定理,可以得到BD与平面PAC中两个相交直线PA,AC均垂直,进而根据线面垂直的判定定理得到BD⊥平面PAC; (Ⅱ)连接PE,可得∠AEP为二面角P-BD-A的平面角,解三角形AEP即可得到二面角P-BD-A的大小. 解法二:(I)以A为坐标原点,建立空间坐标系,根据向量垂直,数量积为零,判断出BD⊥AP,BD⊥AC,再由线面垂直的判定定理得到BD⊥平面PAC; (Ⅱ)分别求出平面PBD与平面ABD的一个法向量,代入向量夹角公式,即可得到二面角P-BD-A的大小. 解法一:(Ⅰ)∵PA⊥平面ABCD,BD⊂平面ABCD.∴BD⊥PA. 又,.∴∠ABD=30°,∠BAC=60°,∴∠AEB=90°,即BD⊥AC. 又PA∩AC=A.∴BD⊥平面PAC. …..(6分) (Ⅱ)连接PE.∵BD⊥平面PAC.∴BD⊥PE,BD⊥AE.∴∠AEP为二面角P-BD-A的平面角. 在Rt△AEB中,, ∴,∴∠AEP=60°,∴二面角P-BD-A的大小为60°.            …..(12分) 解法二:(Ⅰ)如图,建立坐标系, 则A(0,0,0),,,D(0,2,0),P(0,0,3), ∴,,,∴. ∴BD⊥AP,BD⊥AC, 又PA∩AC=A,∴BD⊥面PAC. (Ⅱ)设平面ABD的法向量为m=(0,0,1), 设平面PBD的法向量为n=(x,y,1), 则n,n∴解得∴. ∴cos<m,n>==.∴二面角P-BD-A的大小为60°.
复制答案
考点分析:
相关试题推荐
在△ABC中,a,b,c分别是角A,B,C的对边,且manfen5.com 满分网
(I)求cosC的值;
(II)若3ab=25-c2,求△ABC面积的最大值.
查看答案
设数列{an}满足a1+3a2+32a3+…+3n-1an=manfen5.com 满分网,n∈N*
(1)求数列{an}的通项;
(2)设manfen5.com 满分网,求数列{bn}的前n项和Sn
查看答案
①函数manfen5.com 满分网在[0,π]上是减函数;
②点A(1,1)、B(2,7)在直线3x-y=0两侧;
③数列{an}为递减的等差数列,a1+a5=0,设数列{an}的前n项和为Sn,则当n=4时,Sn取得最大值;
④定义运算manfen5.com 满分网则函数manfen5.com 满分网的图象在点manfen5.com 满分网处的切线方程是6x-3y-5=0.
其中正确命题的序号是    (把所有正确命题的序号都写上). 查看答案
设抛物线C:y2=16x的焦点为F,过点Q(-4,0)的直线l与抛物线C相交于A,B两点,若|QA|=2|QB|,则直线l的斜率k=    查看答案
设实数x,y满足约束条件manfen5.com 满分网,若目标函数z=manfen5.com 满分网+manfen5.com 满分网(a>0,b>0)的最大值为9,则d=manfen5.com 满分网的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.