满分5 > 高中数学试题 >

已知函数f(x)=ax3+bx2-3x(a,b∈R)在点(1,f(1))处的切线...

已知函数f(x)=ax3+bx2-3x(a,b∈R)在点(1,f(1))处的切线方程为y+2=0.
(1)求函数f(x)的解析式;
(2)若对于区间[-2,2]上任意两个自变量的值x1,x2都有|f(x1)-f(x2)|≤c,求实数c的最小值;
(3)若过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线,求实数m的取值范围.
(1)由题意,利用导函数的几何含义及切点的实质建立a,b的方程,然后求解即可; (2)由题意,对于定义域内任意自变量都使得|f(x1)-f(x2)|≤c,可以转化为求函数在定义域下的最值即可得解; (3)由题意,若过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线,等价与函数在切点处导函数值等于切线的斜率这一方程有3解. 【解析】 (1)f'(x)=3ax2+2bx-3.(2分) 根据题意,得即解得 所以f(x)=x3-3x. (2)令f'(x)=0,即3x2-3=0.得x=±1. 当x∈(-∞,-1)时,f′(x)>0,函数f(x)在此区间单调递增; 当x∈(-1,1)时,f′(x)<0,函数f(x)在此区间单调递减 因为f(-1)=2,f(1)=-2, 所以当x∈[-2,2]时,f(x)max=2,f(x)min=-2. 则对于区间[-2,2]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤|f(x)max-f(x)min|=4,所以c≥4. 所以c的最小值为4. (3)因为点M(2,m)(m≠2)不在曲线y=f(x)上,所以可设切点为(x,y). 则y=x3-3x. 因为f'(x)=3x2-3,所以切线的斜率为3x2-3. 则3x2-3=, 即2x3-6x2+6+m=0. 因为过点M(2,m)(m≠2)可作曲线y=f(x)的三条切线, 所以方程2x3-6x2+6+m=0有三个不同的实数解. 所以函数g(x)=2x3-6x2+6+m有三个不同的零点. 则g'(x)=6x2-12x.令g'(x)=0,则x=0或x=2. 当x∈(-∞,0)时,g′(x)>0,函数g(x)在此区间单调递增;当x∈(0,2)时,g′(x)<0,函数g(x)在此区间单调递减; 所以,函数g(x)在x=0处取极大值,在x=2处取极小值,有方程与函数的关系知要满足题意必须满足: ,即,解得-6<m<2.
复制答案
考点分析:
相关试题推荐
如图,在四棱锥O-ABCD中,底面ABCD是边长为2的菱形,∠ABC=60°,OA⊥底面ABCD,OA=2,M为OA的中点,P为CD的中点.
(1)求证:CD⊥平面MAP;
(2)求证:MP∥平面OBC;
(3)求三棱锥M-PAD的体积.

manfen5.com 满分网 查看答案
某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?
(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=manfen5.com 满分网
查看答案
文科班某同学参加广东省学业水平测试,物理、化学、生物获得等级A和获得等级不是A的机会相等,物理、化学、生物获得等级A的事件分别记为W1、W2、W3,物理、化学、生物获得等级不是A的事件分别记为manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(1)试列举该同学这次水平测试中物理、化学、生物成绩是否为A的所有可能结果(如三科成绩均为A记为(W1,W2,W3));
(2)求该同学参加这次水平测试获得两个A的概率;
(3)试设计一个关于该同学参加这次水平测试物理、化学、生物成绩情况的事件,使该事件的概率大于85%,并说明理由.
查看答案
设函数manfen5.com 满分网,x∈R.
(I)求函数f(x)的周期和值域;
(II)记△ABC的内角A,B,C的对边分别为a,b,c,若manfen5.com 满分网,且manfen5.com 满分网,求角C的值.
查看答案
求函数manfen5.com 满分网在[0,3]上的最大值与最小值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.