满分5 > 高中数学试题 >

已知函数f(x)=,其中a>0. (Ⅰ)若a=1,求曲线y=f(x)在点(2,f...

已知函数f(x)=manfen5.com 满分网,其中a>0.
(Ⅰ)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)若在区间manfen5.com 满分网上,f(x)>0恒成立,求a的取值范围.
(Ⅰ)把a=1代入到f(x)中得到切点的坐标,利用导数求出直线切线,即可求出切线方程; (Ⅱ)求出f′(x)=0时x的值,分0<a≤2和a>2两种情况讨论函数的增减性分别得到f(-)和f()及f(-)和f()都大于0,联立求出a的解集的并集即可. (Ⅰ)【解析】 当a=1时,f(x)=, f(2)=3;f′(x)=3x2-3x,f′(2)=6. 所以曲线y=f(x)在点(2,f(2))处的切线方程为y-3=6(x-2), 即y=6x-9; (Ⅱ)【解析】 f′(x)=3ax2-3x=3x(ax-1). 令f′(x)=0,解得x=0或x=. 以下分两种情况讨论: (1)若0<a≤2,则; 当x变化时,f′(x),f(x)的变化情况如下表: 当时,f(x)>0,等价于即. 解不等式组得-5<a<5.因此0<a≤2; (2)若a>2,则 当x变化时,f′(x),f(x)的变化情况如下表: 当时,f(x)>0等价于即 解不等式组得或.因此2<a<5. 综合(1)和(2),可知a的取值范围为0<a<5.
复制答案
考点分析:
相关试题推荐
manfen5.com 满分网在海岸A处,发现北偏东45°方向,距离Amanfen5.com 满分网nmile的B处有一艘走私船,在A处北偏西75°的方向,距离A2nmile的C处的缉私船奉命以manfen5.com 满分网nmile/h的速度追截走私船,此时,走私船正以10nmile/h的速度从B处向北偏东30°方向逃窜.
(1)求线段BC的长度;
(2)求∠ACB的大小;
(参考数值:manfen5.com 满分网
(3)问缉私船沿北偏西多少度的方向能最快追上走私船?
查看答案
如图,在梯形ABCD中,AB∥CD,E,F是线段AB上的两点,且DE⊥AB,CF⊥AB,AB=12,AD=5,BC=4manfen5.com 满分网,DE=4.现将△ADE,△CFB分别沿DE,CF折起,使A,B两点重合与点G,得到多面体CDEFG.
(1)求证:平面DEG⊥平面CFG;
(2)求多面体CDEFG的体积.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网,x∈R,且manfen5.com 满分网
(1)求A的值;
(2)设manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网,求cos(α+β)的值.
查看答案
某加工厂用某原料由甲车间加工出A产品,由乙车间加工出B产品.甲车间加工一箱原料需耗费工时10小时,可加工出7千克A产品,每千克A产品获利40元.乙车间加工一箱原料需耗费工时6小时,可加工出4千克B产品,每千克B产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,那么要满足上述的要求,并且获利最大,甲、乙两车间应当各生产多少箱?

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网
(Ⅰ)求f(x)的最小正周期:
(Ⅱ)求f(x)在区间manfen5.com 满分网上的最大值和最小值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.