满分5 > 高中数学试题 >

数列{an}的前N项和为Sn,a1=1,an+1=2Sn(n∈N*). (Ⅰ)求...

数列{an}的前N项和为Sn,a1=1,an+1=2Sn(n∈N*).
(Ⅰ)求数列{an}的通项an
(Ⅱ)求数列{nan}的前n项和T.
(I)利用递推公式an+1=2Sn把已知转化为an+1与an之间的关系,从而确定数列an的通项; (II)由(I)可知数列an从第二项开始的等比数列,设bn=n则数列bn为等差数列,所以对数列n•an的求和应用乘“公比”错位相减. 【解析】 (I)∵an+1=2Sn, ∴Sn+1-Sn=2Sn, ∴=3. 又∵S1=a1=1, ∴数列{Sn}是首项为1、公比为3的等比数列,Sn=3n-1(n∈N*). ∴当n≥2时,an-2Sn-1=2•3n-2(n≥2), ∴an= (II)Tn=a1+2a2+3a3+…+nan, 当n=1时,T1=1; 当n≥2时,Tn=1+4•30+6•31+…+2n•3n-2,①3Tn=3+4•31+6•32+…+2n•3n-1,② ①-②得:-2Tn=-2+4+2(31+32+…+3n-2)-2n•3n-1=2+2•=-1+(1-2n)•3n-1 ∴Tn=+(n-)3n-1(n≥2). 又∵Tn=a1=1也满足上式,∴Tn=+(n-)3n-1(n∈N*)
复制答案
考点分析:
相关试题推荐
在如图所示的几何体中,平面ACE⊥平面ABCD,四边形ABCD为平行四边形,∠ACB=90°,EF∥BC,AC=BC=manfen5.com 满分网,AE=EC=1.
(Ⅰ)求证:AE⊥平面BCEF;
(Ⅱ)求三棱锥D-ACF的体积.

manfen5.com 满分网 查看答案
等差数列{an}的各项均为正数,a1=3,前n项和为Sn,{bn}为等比数列,b1=1,且b2S2=64,b3S3=960.
(1)求an与bn
(2)求和:manfen5.com 满分网
查看答案
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足cos manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网=6.
(1)求△ABC的面积;  
(2)若c=2,求a的值.
查看答案
设数列{an}的前n项和为Sn,则下列说法错误的是   
①若{an}是等差数列,则{3an+1-2an}是等差数列;
②若{an}是等差数列,则{|an|}是等差数列;
③若{an}是公比为q的等比数列,则{an+1-an}也是等比数列且公比为q;
④若{an}是公比为q的等比数列,则Sk,S2k-Sk,S3k-S2k(k为常数且k∈N)也是等比数列且公比为qk查看答案
一艘轮船以manfen5.com 满分网速度向正北方向航行,在A处看灯塔S在船的北偏东45°方向,1小时30分钟后船行到B处,在B处看灯塔S在船的南偏东75°方向上,则灯塔S与B的距离为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.