如图所示,轻弹簧两端拴接两个质量均为m的小球a、b,拴接小球的细线固定在天花板上,两球静止,两细线与水平方向的夹角均为,弹簧水平,以下说法正确的是()
A.细线拉力大小为mg
B.剪断左侧细线瞬间,b球加速度大小为
C.弹簧的弹力大小为
D.剪断左侧细线瞬间,a球加速度大小为
如图所示,在xOy平面的第三象限内,在平行于x轴的虚线与x轴之间有平行于x轴、方向沿x轴正方向的匀强电场,匀强电场的电场强度为E,虚线交y轴于C点,其他部分有垂直于坐标平面向外的匀强磁场,磁感应强度为,虚线上坐标为(—2L,—L)处有一粒子源,可以沿y轴正方向发射不同速率的同种粒子,粒子的电荷量为q(q>0),质量为m,不计粒子的重力.
(1)若粒子源发出的所有粒子均能从OC间射出电场,求粒子的速度范围;
(2)求在第(1)问中,所有粒子进入磁场偏转后,再通过y轴的区域的长度;
(3)若某个粒子的速度较大,该粒子从(-1.5L,O)点进入磁场,求该粒子从出电场到再次进入电场所用的时间.
如图所示,光滑曲面AB与水平面BC平滑连接于B点,BC右端连接内壁光滑、半径为r的细圆管CD,管口D端正下方直立一根劲度系数为k的轻弹簧,轻弹簧一端固定,另一端恰好与管口D端平齐.质量为m的滑块在曲面上距BC的高度为2r处从静止开始下滑,滑块与BC间的动摩擦因数,进入管口C端时与圆管恰好无作用力,通过CD后压缩弹簧,在压缩弹簧过程中滑块速度最大时弹簧的弹性势能为EP.重力加速度为g.求:
(1)滑块到达B点时速度大小vB;
(2)水平面BC的长度s;
(3)在压缩弹簧过程中滑块的最大速度vm.
均匀导线制成的单匝正方形闭合线框abcd,每边长为L,总电阻为R,总质量为m.将其置于磁感应强度为B的水平匀强磁场上方h处,如图所示.线框由静止开始自由下落,线框平面保持在竖直平面内,且cd边始终与水平的磁场边界平行.重力加速度为g.当cd边刚进入磁场时,
(1)求线框中产生的感应电动势大小;
(2)求cd两点间的电势差大小;
(3)若此时线框加速度恰好为零,求线框下落的高度h所应满足的条件.
用以下器材测量待测电阻Rx的阻值:
待测电阻Rx:阻值约为100Ω
电源E:电动势约为6.0V、内阻忽略不计
理想电流表A1:量程50mA
理想电流表A2:量程300mA
定值电阻R0:阻值为20Ω
滑动变阻器R:最大阻值为10Ω
单刀单掷开关S、导线若干
测量电阻Rx的电路图如图1所示,试分析下列问题:
(1)开关S闭合前,滑动变阻器R滑片应该移到(填“A”、“B”或“无要求”)端.
(2)图2中已经连接了部分电路,请根据图1将图2中的实物图连接成实验电路.
(3)若某次测量中电流表A1的示数为I1,电流表A2的示数为I2,则由已知量和测得量表示Rx的表达式为Rx= .(请用题中字母表达)
(1)我们已经知道,物体的加速度a同时跟合外力F和质量M两个因素有关。要研究这三个物理量之间的定量关系,需采用的思想方法是 .
(2)某同学的实验方案如图所示,她想用砂桶的重力表示小车受到的合外力F,为了减少这种做法带来的实验误差,她先做了两方面的调整措施:
a.用小木块将长木板无滑轮的一端垫高,目的是 .
b.使砂桶的质量远小于小车的质量,目的是使拉小车的力近似等于 .
(3)该同学利用实验中打出的纸带求加速度时,处理方案有两种:
A.利用公式计算
B.根据逐差法利用计算
两种方案中,选择方案 比较合理.