宇宙飞船以周期为T绕地球作圆周运动时,由于地球遮挡阳光,会经历“日全食”过程,如图所示.已知地球的半径为R,地球质量为M,引力常量为G,地球自转周期为T0.太阳光可看作平行光,宇航员在A点测出的张角为α,则( )
A. 飞船绕地球运动的线速度为
B. 一天内飞船经历“日全食”的次数为
C. 飞船每次“日全食”过程的时间为
D. 飞船周期为T=
P1、P2为相距遥远的两颗行星,距各自表面相同高度处各有一颗卫星s1、s2做匀速圆周运动.图中纵坐标表示行星对周围空间各处物体的引力产生的加速度a,横坐标表示物体到行星中心的距离r的平方,两条曲线分别表示P1、P2周围的a与r2的反比关系,它们左端点横坐标相同.则( )
A.P1的平均密度比P2的大
B.P1的“第一宇宙速度”比P2的小
C.s1的向心加速度比s2的大
D.s1的公转周期比s2的大
若在某行星和地球上相对于各自的水平地面附近相同的高度处、以相同的速率平抛一物体,它们在水平方向运动的距离之比为2:.已知该行星质量约为地球的7倍,地球的半径为R.由此可知,该行星的半径约为( )
A. R B. R C. 2R D. R
如图,拉格朗日点L1位于地球和月球连线上,处在该点的物体在地球和月球引力的共同作用下,可与月球一起以相同的周期绕地球运动.据此,科学家设想在拉格朗日点L1建立空间站,使其与月球同周期绕地球运动,以a1、a2分别表示该空间站和月球向心加速度的大小,a3表示地球同步卫星向心加速度的大小.以下判断正确的是( )
A. a2>a3>a1 B. a2>a1>a3 C. a3>a1>a2 D. a3>a2>a1
冥王星绕太阳的公转轨道是个椭圆,公转周期为T0,其近日点到太阳的距离为a,远日点到太阳的距离为b,半短轴的长度为c,A、B、C、D分别为长短轴的端点,如图所示.若太阳的质量为M,万有引力常量为G,忽略其他行星对它的影响则( )
A. 冥王星从A→B→C的过程中,速率逐渐变大
B. 冥王星从A→B所用的时间等于
C. 冥王星从B→C→D的过程中,万有引力对它先做正功后做负功
D. 冥王星在B点的加速度为
如图所示,水平传送带的长度L=6m,皮带轮以速度v顺时针匀速转动,传送带的左端与一光滑圆弧槽末端相切,现有一质量为1kg的物体(视为质点),从高h=1.25m处O点无初速度下滑,物体从A点滑上传送带,物体与传送带间的动摩擦因数为0.2,g取10m/s2,保持物体下落的高度不变,改变皮带轮的速度v,则物体到达传送带另一端的速度vB随v的变化图线是( )
A. B.
C. D.