如图,直角坐标系xOy位于同一竖直平面内,其中x轴水平,y轴竖直。xOy平面内长方形区域OABC内有方向垂直OA的匀强电场,OA长为l,与x轴间的夹角θ=30°,一质量为m,电荷量为q的带正电小球(可看成质点)从y轴上的P点沿x轴方向以一定速度射出,恰好从OA的中点M垂直OA进入电场区域。已知重力加速度为g。
(1)求P点的纵坐标及小球从P点射出时的速度
(2)已知电场强度的大小为E= mg/q,若小球不能从BC边界离开 电场,OC长度应满足什么条件?
如图所示,在某竖直平面内,光滑曲面AB与水平面BC平滑连接于B点,BC右端连接内壁光滑、半径r=0.2m的四分之一细圆管CD,管口D端正下方直立一根劲度系数为k=100N/m的轻弹簧,弹簧一端固定,另一端恰好与管口D端平齐.一个质量为1kg的小球放在曲面AB上,现从距BC的高度为h=0.6m处静止释放小球,它与BC间的动摩擦因数μ=0.5,小球进入管口C端时,它对上管壁有FN=2.5mg的作用力,通过CD后,在压缩弹簧过程中滑块速度最大时弹簧的弹性势能为Ep=0.5J.取重力加速度g=10m/s2.
求(1)小球在C处受到的向心力大小;
(2)在压缩弹簧过程中小球的最大动能Ekm;
(3)小球最终停止的位置.
一质量m=0.5 kg的滑块以一定的初速度冲上一倾角θ=37°的足够长的斜面。某同学利用传感器测出了滑块冲上斜面过程中多个时刻的瞬时速度,并用计算机作出了滑块上滑过程的v-t图象,如图所示。(最大静摩擦力等于滑动摩擦力,sin 37°=0.6,cos 37°=0.8,g=10 m/s2)
(1)求滑块与斜面间的动摩擦因数;
(2)判断滑块最后能否返回斜面底端。若能返回,求出返回斜面底端时的速度大小;若不能返回,求出滑块停在什么位置。
测定一卷阻值约为30Ω 的金属漆包线的长度,实验室提供下列器材:
A.电流表A:量程0.6 A,内阻RA约为20Ω
B.电压表V:量程15V,内阻RV约为4kΩ
C.学生电源E:可提供0~30V直流电压
D.滑动变阻器R1:阻值范围0~10Ω
E.滑动变阻器R2:阻值范围0~500Ω
F.电键S及导线若干
(1)为了较准确地测量该漆包线的电阻,滑动变阻器应选择 (选填“R1”或“R2”),并将方框中的电路图补画完整。
(2)根据正确的电路图进行测量,某次实验中电压表与电流表的示数如图,则电压表的示数U为 V,电流表的示数I为 A。
(3)已知这种漆包线金属丝的直径为d,材料的电阻率为,则这一卷漆包线的长度L= (用U、、d、表示)。
某同学用打点计时器测量做匀加速直线运动的物体的加速度,电源频率f=50Hz,在纸带上打出的点中,选出零点,每隔4个点取1个计数点,因保存不当,纸带被污染,下如所示,A、B、C、D是依次排列的4个计数点,仅能读出其中3个计数点到零点的距离: sA=16.6mm,sB=126.5mm,sD=624.5mm。
若无法再做实验,可由以上信息推知:
①相邻两计数点的时间间隔为 s;
②打C点时物体的速度大小为 m/s(取2位有效数字);
③物体的加速度大小为 (用sA、sB、sD和f表示)。
如图所示,一质量为M的斜面体静止在水平地面上,物体B受沿斜面向上的力F作用沿斜面匀速上滑,A、B之间的动摩擦因数为μ,μ< tanθ,且A、B质量均为m,则( )
A.A、B保持相对静止
B.地面对斜面体的摩擦力等于
C.地面受到的压力等于
D.B与斜面间的动摩擦因数为