满分5 > 高中物理试题 >

如图甲、乙、丙所示,三个完全相同的半圆形光滑绝缘轨道置于竖直平面内,左右两端点等...

如图甲、乙、丙所示,三个完全相同的半圆形光滑绝缘轨道置于竖直平面内,左右两端点等高,其中图乙轨道处在垂直纸面向外的匀强磁场中,图丙轨道处在竖直向下的匀强电场中,三个相同的带正电小球同时从轨道左端最高点处由静止释放.则三个带电小球通过圆轨道最低点时

A. 速度相同

B. 均能到达轨道右端最高点处

C. 对轨道的压力相同

D. 所用时间相同

 

B 【解析】A. 在乙图中,因为洛仑兹力总是垂直于速度方向,故洛仑兹力不做功;滑块下落时只有重力做功,故甲和乙两次机械能均守恒,故两次滑块到最低点的速度相等 ,丙图中,小球下滑的过程中电场力做正功,重力做正功,所以小球在最低点的速度大于甲图和乙图中的速度。故A错误; B. 三个小球的运动过程中,重力做功,动能和重力势能之间转换;洛伦兹力不做功;电场力做功,电势能与动能之间转换;由于没有其他的能量损失,所以三种情况下,小球均能到达轨道右端最高点处,故B正确; C. 小球在最低点时,甲图中重力和支持力提供向心力,而乙图中是重力、支持力和洛伦兹力提供向心力,所以小球受到的支持力大小不相等,对轨道的压力也不相等。故C错误; D. 甲图和丙图比较可得,丙图中,小球的加速度比较大,所以达到最低点的时间要短。故D错误; 故选:B。 【名师点睛】分析物体受力情况及各力做功情况,由动能定理可求得小滑块到达最低点时的速度;由滑块下滑的加速度可知滑块滑到最低点时所用的时间;由洛仑兹力公式可知大小关系;由向心力公式可知支持力的大小关系;由能量转化与守恒定律可知小球均能到达轨道右端最高点处。  
复制答案
考点分析:
相关试题推荐

如图甲所示,用一轻质绳拴着一质量为m的小球,在竖直平面内做圆周运动(不计一切阻力),小球运动到最高点时绳对小球的拉力为F,小球在最高点的速度大小为v,其Fv2图象如图乙所示,则

A. 轻质绳长为b/a

B. 当地的重力加速度为a/m

C. v2c时,轻质绳的拉力大小为

D. 只要v2b,小球在最低点和最高点时绳的拉力差均为6a

 

查看答案

如图所示,粗细均匀、上端封闭的三通细玻璃管中用水银与活塞封闭了两段温度相同、长度分别为LA= 25cmLB=30cm的理想气体AB,竖直管中两段水银柱长均为h=15cm,水平管中水银柱足够长,右端和大气相通,大气压强p0=75cmHg.现缓慢抽动玻璃管下端的活塞,使AB两部分气体体积相同,求活塞下移的距离.

 

查看答案

如图,一质量和厚度均可忽略的活塞将气体密封在足够高的导热气缸内,系统静止时缸内的气体温度、压强分别与外界温度T0、外界压强p0相等,活塞与气缸底部高度差为h.现对气缸底部缓慢加热,活塞缓慢上升.已知气体吸收的热量Q与温度差ΔT的关系为QkΔT(其中k为常量,且k>0),活塞的面积为S,不计一切摩擦,求:

(1) 当活塞在缸内上升到离缸底高度为3h时缸内气体的温度T

(2) 在活塞从离缸底高度为h上升到高度为3h的过程中,缸内气体增加的内能ΔU.

 

查看答案

如图所示,导热性能良好的气缸的开口向下,内有体积为V0的理想气体,外界大气压强为p0,环境温度为T0,轻活塞的横截面积为S,轻活塞与气缸之间的摩擦不计.现在活塞下面挂一个质量为m的小桶,活塞缓慢下移,并最终处于某一位置静止不动.已知重力加速度为g.

求挂上小桶后系统稳定时,气缸内气体的体积V.

拿掉小桶后,若要保持气缸内气体的体积V不变,环境温度需要升高到多少?气缸吸热还是放热?

 

查看答案

如图所示,长L=2m的均匀细管竖直放置,下端封闭,管内封有一定量的气体。现用一段长h=25cm的水银柱从管口注入将气柱封闭,该过程中环境温度T0=360K不变且不漏气。现将玻璃管移入恒温箱中倒置,稳定后水银柱下端与管口平齐(没有水银漏出)。已知大气压强为p0=75cmHg。求注水银后气柱的长度和恒温箱的温度各为多少?

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.