2的算术平方根是( ) A. B.± C.4 D.±4
|
|
如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE. (1)求证:CE=CF; (2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么? (3)运用(1)(2)解答中所积累的经验和知识,完成下题: 如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=6,E是AB上一点,且∠DCE=45°,BE=2,求DE的长.
|
|||||
如图,矩形ABCD中,AB=4cm,BC=8cm,动点M从点D出发,按折线DCBAD方向以2cm/s的速度运动,动点N从点D出发,按折线DABCD方向以1cm/s的速度运动. (1)若动点M、N同时出发,经过几秒钟两点相遇? (2)若点E在线段BC上,且BE=3cm,若动点M、N同时出发,相遇时停止运动,经过几秒钟,点A、E、M、N组成平行四边形?
|
|
在8×8的正方形网格中建立如图所示的平面直角坐标系,已知A(2,4)、B(4,2).C是第一象限内的一个格点,点C与线段AB可以组成一个以AB为底,且腰长为无理数的等腰三角形. (1)填空:点C的坐标是__________,△ABC的面积是_________. (2)将△ABC绕点C旋转180°得到△A1B1C1连接AB1、BA1,试判断四边形AB1A1B是何种特殊四边形,画图并说明理由.
|
|
某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费。 (1)写出该单位水费y(元)与每月用水量x(吨)之间的函数关系式: ①用水量小于等于3000吨________________________; ②用水量大于3000吨____________________________。 (2)某月该单位用水2000吨,水费是_____元;若用水4000吨,水费_____元。 (3)若某月该单位缴纳水费1540元,则该单位用水多少吨?
|
|
如图,在四边形ABCD中,AB=CD,M、N、P、Q分别为AD、BC、BD、AC的中点.试判断线段MN、PQ的关系,并加以证明.
|
|
已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E. (1)请说明:四边形ADCE为矩形: (2)当△ABC满足什么条件时,四边形ADCE是一个正方形?请给出证明.
|
|
如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.问四边形AFCE是菱形吗?请说明理由.
|
|
如图,已知AB=AC,DE垂直平分AB交AC、AB于E、D两点,若AB=12cm,BC=10cm,∠A=50°,求△BCE的周长和∠EBC的度数.
|
|
已知成正比例,当 (1)求出y与x的函数关系式。 (2)自变量x取何值时,函数值为4?
|
|