如图,抛物线(a0)与双曲线相交于点A,B. 已知点A的坐标为(1,4),点B在第三象限内,且△AOB的面积为3(O为坐标原点). (1)求实数a,b,k的值; (2)过抛物线上点A作直线AC∥x轴,交抛物线于另一点C,求所有满足△EOC∽△AOB的点E的坐标.
|
|
如图,△ABC为等腰三角形,AP是底边BC上的高,点D是线段PC上的一点,BE和CF分别是△ABD和△ACD的外接圆直径,连接EF. 求证: .
|
||||
对于i=2,3,…,k,正整数n除以i所得的余数为i-1.若的最小值满足,则正整数的最小值为 .
|
|
如图,射线AM,BN都垂直于线段AB,点E为AM上一点,过点A作BE的垂线AC分别交BE,BN于点F,C,过点C作AM的垂线CD,垂足为D.若CD=CF,则 .
|
|
如图,在平面直角坐标系xOy中,多边形OABCDE的顶点坐标分别是O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0).若直线l经过点M(2,3),且将多边形OABCDE分割成面积相等的两部分,则直线l的函数表达式是 .
|
||||
一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶.在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间.过了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上了客车;再过t分钟,货车追上了客车,则t= .
|
|
已知a=-1,则2a3+7a2-2a-12 的值等于 .
|
|
如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,-1),C(-2,-1),D(-1,1).y轴上一点P(0,2)绕点A旋转180°得点P1,点P1绕点B旋转180°得点P2,点P2绕点C旋转180°得点P3,点P3绕点D旋转180°得点P4,……,重复操作依次得到点P1,P2,…, 则点P2010的坐标是( ). (A)(2010,2) (B)(2010,) (C)(2012,) (D)(0,2)
|
|
在一列数……中,已知,且当k≥2时, (取整符号表示不超过实数的最大整数,例如,),则等于( ). (A) 1 (B) 2 (C) 3 (D) 4
|
|
如图,在四边形ABCD中,∠B=135°,∠C=120°,AB=,BC=,CD=,则AD边的长为( ). (A) (B) (C) (D)
|
|